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​Abstract​

​Confidence,​ ​the​ ​“feeling​ ​of​ ​knowing”​ ​that​ ​accompanies​ ​every​ ​cognitive​ ​process,​ ​plays​ ​a​​critical​​role​​in​
​human​ ​reinforcement​ ​learning;​ ​yet​ ​its​ ​computational​ ​bases​ ​in​ ​learning​ ​scenarios​ ​have​ ​only​ ​recently​
​begun​ ​to​ ​be​ ​studied.​ ​Prior​ ​work​ ​has​ ​distinguished​ ​between​ ​value​ ​confidence​ ​(certainty​ ​in​ ​value​
​estimates)​ ​and​ ​decision​ ​confidence​ ​(certainty​ ​that​ ​a​ ​choice​ ​is​ ​correct),​ ​but​ ​how​ ​these​ ​two​ ​forms​ ​of​
​confidence​ ​are​ ​computed​ ​and​ ​interact​​has​​not​​been​​directly​​tested.​​Here​​we​​combine​​two​​experiments​
​and​ ​previously​ ​published​ ​datasets​ ​to​ ​test​ ​competing​ ​computational​ ​hypotheses.​ ​We​ ​find​ ​that​ ​value​
​confidence​​is​​best​​explained​​by​​a​​Bayesian​​computation​​reflecting​​the​​precision​​of​​value​​estimates,​​and​
​that​ ​it​ ​adaptively​ ​guides​ ​behaviour​ ​by​ ​reducing​ ​exploration​ ​and​ ​promoting​ ​exploitation​ ​as​ ​certainty​
​increases.​ ​In​ ​contrast,​ ​decision​ ​confidence​ ​departs​ ​from​ ​Bayesian​ ​predictions,​ ​especially​ ​on​ ​errors.​ ​A​
​hybrid​​model​​integrating​​Bayesian​​probability​​with​​the​​precision​​of​​the​​decision​​variable​​better​​accounts​
​for​ ​decision​ ​confidence.​ ​Moreover,​ ​the​ ​relative​ ​weights​ ​assigned​ ​to​ ​these​ ​two​ ​sources​ ​of​ ​information​
​characterize​​individual​​differences​​in​​confidence​​reporting​​and,​​in​​addition,​​they​​are​​predictive​​of​​task​​and​
​metacognitive​​performance,​​where​​the​​more​​Bayesian​​the​​subject,​​the​​higher​​the​​performance.​​Together,​
​these​ ​results​ ​provide​ ​a​ ​unified​ ​computational​ ​mechanism​ ​through​ ​which​ ​distinct​ ​forms​ ​of​ ​confidence​
​shape learning and choices in uncertain environments.​
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​Introduction​

​Humans​ ​routinely​ ​face​ ​uncertainty,​ ​about​ ​the​ ​state​​of​​the​​world,​​the​​outcomes​​of​​their​​actions,​​and​​the​
​intentions​ ​of​ ​others.​ ​To​ ​navigate​ ​this​ ​uncertainty,​ ​the​ ​brain​ ​constructs​ ​internal​ ​beliefs​ ​and​ ​attaches​ ​to​
​them​​a​​sense​​of​​confidence:​​a​​graded​​estimate​​of​​how​​reliable​​those​​beliefs​​are​​(Meyniel,​​Sigman,​​et​​al.,​
​2015).​ ​Confidence,​ ​in​ ​this​ ​broad​ ​sense,​ ​permeates​ ​virtually​ ​every​​domain​​of​​cognition.​​For​​instance,​​it​
​shapes​ ​how​ ​we​​learn​​from​​feedback​​(Meyniel,​​Schlunegger,​​et​​al.,​​2015),​​monitor​​and​​adjust​​decisions​
​(Yeung​ ​&​ ​Summerfield,​ ​2012),​ ​seek​ ​information​ ​(Desender​ ​et​ ​al.,​ ​2018),​ ​and​ ​coordinate​ ​with​ ​others​
​(Bang​​et​​al.,​​2017).​​Its​​pervasive​​influence​​has​​led​​to​​the​​view​​that​​confidence​​is​​a​​central​​component​​of​
​behavioural​​control​​(Schulz​​et​​al.,​​2023),​​and​​a​​key​​construct​​in​​transdiagnostic​​models​​of​​mental​​health​
​(Hoven et al., 2019).​

​Despite​​its​​ubiquity,​​confidence​​is​​typically​​treated​​as​​a​​summary​​of​​how​​certain​​the​​brain​​is​​about​​its​​own​
​states.​ ​This​ ​assumption​ ​has​ ​been​​highly​​productive,​​primarily​​through​​the​​use​​of​​perceptual​​paradigms​
​and​​the​​study​​of​​decision​​confidence—the​​subjective​​probability​​of​​having​​made​​a​​correct​​choice​​(Figure​
​1;​​Fleming,​​2024;​​Pouget​​et​​al.,​​2016).​​In​​this​​framework,​​confidence​​can​​bias​​subsequent​​choices​​(Lisi​
​et​ ​al.,​ ​2020)​ ​or​ ​determine​ ​when​ ​to​ ​stop​ ​accumulating​ ​evidence​ ​(Balsdon​ ​et​ ​al.,​ ​2020;​ ​Balsdon​ ​&​
​Philiastides,​​2024),​​yet​​it​​is​​usually​​conceived​​as​​a​​more​​reflective​​quantity—a​​metacognitive​​evaluation​
​of​ ​one’s​ ​accuracy—rather​ ​than​​as​​a​​variable​​exerting​​a​​direct​​or​​instrumental​​influence​​on​​the​​decision​
​process.​ ​In​ ​contrast,​ ​research​ ​in​ ​human​ ​reinforcement​ ​learning​ ​(RL)​ ​has​ ​centered​ ​on​ ​value​
​confidence—the​ ​confidence​ ​or​ ​certainty​ ​in​ ​the​ ​values​ ​or​ ​expected​ ​outcomes​​associated​​with​​available​
​options​​(Figure​​1)—which​​plays​​a​​pivotal​​role​​in​​adaptive​​behavior​​by,​​for​​instance,​​governing​​the​​rate​​of​
​belief​ ​updating,​ ​modulating​​the​​exploration–exploitation​​trade-off,​​and​​determining​​how​​new​​information​
​is​ ​weighted​ ​against​ ​prior​ ​expectations​ ​(Behrens​ ​et​ ​al.,​ ​2007;​ ​Boldt​ ​et​ ​al.,​ ​2019;​ ​Nassar​ ​et​ ​al.,​ ​2010;​
​Payzan-LeNestour & Bossaerts, 2011).​

​The​ ​contrast​ ​between​ ​the​ ​approaches​ ​used​ ​in​ ​perceptual​ ​and​ ​reinforcement-learning​ ​paradigms​
​exposes​ ​a​ ​fundamental​ ​tension​ ​in​ ​how​​these​​two​​traditions​​conceptualize​​confidence:​​while​​perceptual​
​models​​define​​it​​as​​a​​reflective​​readout​​of​​certainty,​​learning​​models​​reveal​​it​​as​​a​​generative​​signal​​that​
​drives​ ​behaviour.​ ​How​ ​these​ ​roles​ ​coexist​ ​within​ ​a​ ​single​ ​computational​ ​architecture​ ​remains​
​unknown—especially​ ​given​ ​that​ ​confidence​ ​itself​ ​is​ ​highly​ ​idiosyncratic​ ​(Navajas​ ​et​ ​al.,​ ​2017).​​Indeed,​
​while​ ​individuals​ ​tend​ ​to​ ​report​ ​confidence​ ​consistently​ ​across​ ​time​ ​(Ais​ ​et​ ​al.,​ ​2016),​ ​their​ ​mappings​
​between​​internal​​uncertainty​​and​​reported​​confidence​​vary​​widely​​across​​the​​population,​​suggesting​​that​
​distinct​​computational​​strategies​​may​​underlie​​how​​uncertainty​​is​​evaluated​​and​​used​​to​​guide​​behaviour.​
​Only​ ​a​ ​handful​ ​of​ ​studies​ ​have​ ​begun​ ​to​ ​address​ ​these​ ​questions​ ​in​ ​human​ ​RL​ ​(Boldt​ ​et​ ​al.,​ ​2019;​
​Salem-Garcia​ ​et​ ​al.,​ ​2023;​ ​Ting​ ​et​ ​al.,​ ​2023),​​leaving​​open​​how​​the​​brain​​integrates​​confidence​​across​
​the​ ​representational​ ​hierarchy—from​ ​beliefs​ ​about​ ​the​ ​world​ ​to​ ​confidence​​in​​the​​choices​​derived​​from​
​them—and how it shapes decisions under uncertainty across individuals.​

​Here,​ ​we​ ​bring​ ​together​ ​these​ ​perspectives​ ​within​ ​a​ ​unified​ ​computational​​framework.​​Using​​both​​new​
​and​ ​previously​ ​published​ ​reinforcement-learning​ ​datasets,​ ​we​ ​show​ ​that​ ​value​ ​confidence​ ​is​ ​well​
​captured​​by​​the​​precision​​(i.e.,​​the​​inverse​​of​​uncertainty)​​of​​Bayesian​​value​​estimates,​​whereas​​decision​
​confidence​ ​departs​ ​from​ ​Bayesian​ ​predictions,​ ​reflecting​ ​a​ ​hybrid​ ​computation​ ​that​ ​integrates​ ​the​
​Bayesian​​probability​​of​​being​​correct​​with​​the​​precision​​of​​the​​decision​​variable.​​The​​relative​​weighting​​of​
​these​ ​components​ ​characterises​ ​individual​ ​computational​ ​profiles—'confidence​ ​phenotypes'—that​
​predict​​performance,​​exploration​​strategies,​​and​​metacognitive​​accuracy.​​Together,​​these​​findings​​reveal​
​that​​confidence​​is​​not​​a​​single​​computation​​but​​a​​family​​of​​mechanisms​​through​​which​​humans​​regulate​
​learning and decision-making under uncertainty.​



​Figure​​1​​–​​Different​​levels​​of​​confidence​​in​​reinforcement​​learning​​contexts.​​Value​​confidence​​(top)​​represents​
​the​​certainty​​about​​latent​​states​​of​​the​​environment,​​such​​as​​the​​value​​of​​one​​option​​in​​multi-armed​​bandit​​tasks.​
​Under​​a​​Bayesian​​framework,​​value​​confidence​​can​​be​​straightforwardly​​modelled​​as​​the​​inverse​​of​​the​​standard​
​deviation​ ​of​ ​a​ ​posterior​ ​distribution​ ​over​ ​the​ ​option’s​ ​estimated​ ​value​ ​(represented​ ​by​ ​in​ ​the​ ​figure).​ ​By​θ
​observing​ ​subsequent​ ​rewards,​ ​not​​only​​the​​estimation​​of​​the​​option’s​​value​​gets​​more​​precise​​but​​the​​posterior​
​shrinks,​​which​​is​​reflected​​in​​an​​increase​​in​​value​​confidence.​​Decision​​confidence​​(bottom)​​reflects​​the​​certainty​
​of​​having​​made​​a​​correct​​choice.​​Under​​a​​Bayesian​​formulation,​​it​​can​​be​​understood​​as​​the​​probability​​of​​being​
​correct,​ ​illustrated​ ​here​ ​by​ ​the​ ​area​ ​under​ ​the​ ​decision​ ​variable​ ​(the​ ​distribution​ ​obtained​ ​by​ ​subtracting​ ​the​
​unchosen​​option’s​​posterior​​from​​the​​chosen​​option’s​​posterior)​​that​​it​​is​​greater​​than​​zero.​​As​​trials​​progress​​and​
​certainty​​about​​the​​environment​​increases,​​the​​decision​​variable​​gets​​more​​precise​​and​​decision​​confidence​​better​
​distinguishes​ ​between​ ​correct​ ​and​ ​incorrect​ ​responses.​ ​This​ ​increase​ ​in​ ​correct​ ​trials​ ​and​​decrease​​in​​incorrect​
​trials is known as the “folded-x pattern” of confidence (Hangya et al., 2016; Sanders et al., 2016).​

​Results​

​Value confidence emerges from Bayesian inference​

​We​​began​​by​​modeling​​value​​confidence,​​i.e.:​​the​​confidence​​on​​the​​estimated​​values​​of​​the​​options.​​In​
​the​ ​value​ ​confidence​ ​task​​from​​Boldt​​et​​al.​​(2019),​​on​​each​​trial​​participants​​(N=21)​​observed​​a​​reward​
​randomly​ ​sampled​​from​​one​​of​​two​​arm-bandits.​​Then,​​they​​reported​​their​​belief​​on​​their​​mean​​value​​of​
​that​ ​option​ ​and​ ​their​ ​confidence​ ​on​ ​this​ ​estimation.​ ​We​ ​tested​ ​several​ ​models​ ​to​ ​fit​ ​these​ ​confidence​
​ratings:​ ​one​ ​model​ ​set​ ​was​ ​based​ ​on​ ​extensions​ ​of​ ​the​ ​Rescorla-Wagner​ ​(RW)​ ​algorithms,​ ​and​ ​the​
​others​ ​were​ ​based​ ​on​ ​Bayesian​ ​inference​ ​(see​ ​Methods​ ​for​ ​details).​ ​Figure​ ​2a​ ​depicts​ ​model​ ​fitting​
​results​ ​of​ ​the​ ​best​ ​two​ ​models​ ​to​ ​this​ ​dataset​ ​(see​ ​Supplementary​ ​Figure​ ​1​ ​for​ ​the​ ​predictions​ ​of​ ​all​
​tested​ ​models).​ ​We​ ​found​ ​that​ ​value​ ​confidence​ ​ratings​ ​were​ ​best​ ​explained​ ​by​ ​a​ ​Bayesian​ ​model​
​(Model​ ​frequency​ ​(​​p​​model​​)​ ​=​ ​0.60,​ ​exceedance​ ​probability​ ​(​​p​​exc.​​)​​>​​.99,​​protected​​exceedance​​probability​
​(​​p​​p.exc.​​)​​>​​.99;​​Figure​​2c),​​in​​which​​value​​confidence​​reflected​​the​​inverse​​of​​the​​standard​​deviation​​of​​the​
​posterior distribution over the estimated value of the option at play.​



​To​​test​​whether​​the​​Bayesian​​account​​of​​value​​confidence​​generalizes​​beyond​​the​​specific​​conditions​​of​
​the​ ​Boldt​ ​et​ ​al.​ ​(2019)​ ​task,​ ​we​ ​next​ ​applied​ ​our​ ​models​ ​to​ ​data​ ​published​ ​by​ ​to​ ​Quandt​ ​et​​al.​​(2022)​
​(N=62​​for​​their​​Experiment​​1;​​N=60​​for​​their​​Experiment​​2).​​In​​their​​task,​​participants​​saw​​a​​sequence​​of​
​a​​hundred​​rewards​​from​​one​​option​​in​​rapid​​presentation​​and​​then,​​as​​in​​Boldt​​et​​al.​​(2019),​​they​​had​​to​
​report​​their​​estimated​​mean​​value​​of​​the​​option​​and​​their​​confidence​​on​​this​​estimate.​​A​​key​​manipulation​
​was​ ​present​ ​in​ ​this​ ​dataset,​ ​namely​ ​that​ ​the​ ​variance​ ​of​ ​the​ ​reward​ ​distributions​​were​​different​​across​
​alternatives,​​thus​​generating​​different​​levels​​of​​certainty​​across​​options​​which​​significantly​​affected​​value​
​confidence​​judgments.​​This​​key​​manipulation​​allowed​​us​​to​​even​​better​​differentiate​​between​​our​​models,​
​as​​some​​of​​the​​candidate​​models​​do​​not​​take​​the​​variance​​of​​the​​reward​​distributions​​into​​account,​​thus​
​predicting​​a​​constant​​level​​of​​confidence​​regardless​​of​​the​​variance​​of​​the​​rewards​​(indeed,​​the​​inclusion​
​of​ ​this​ ​dataset​ ​improved​ ​model​ ​recovery​ ​results,​ ​see​ ​Supplementary​ ​Figure​ ​2).​ ​Specifically,​​we​​tested​
​three​ ​models​ ​on​ ​Quandt​ ​et​ ​al.​ ​(2022)​ ​data:​ ​the​ ​mentioned​ ​Bayesian​ ​model,​​a​​RW​​model​​where​​value​
​confidence​​reflected​​the​​square​​root​​of​​the​​number​​of​​rewards​​seen​​of​​the​​particular​​option​​at​​play​​(as​​it​
​was​​the​​best​​non-Bayesian​​model​​in​​Boldt​​et​​al.​​dataset;​​also​​note​​that,​​in​​this​​dataset,​​this​​model​​make​
​the​​same​​predictions​​as​​the​​other​​models​​that​​were​​a​​function​​of​​the​​number​​of​​rewards​​seen)​​and​​a​​RW​
​model​ ​with​ ​a​ ​separate​​learning​​algorithm​​that​​tracked​​the​​variance​​of​​the​​rewards​​(as​​this​​one​​was​​the​
​only​​RW​​model​​that​​had​​information​​about​​the​​variance​​of​​the​​rewards).​​Note​​that​​we​​did​​not​​include​​any​
​of​​the​​models​​which​​involved​​a​​surprise​​term​​(nor​​the​​model​​where​​value​​confidence​​explicitly​​reflected​
​the​ ​surprise​ ​of​ ​the​ ​reward​ ​seen,​ ​see​ ​Methods)​ ​as​ ​these​ ​models​ ​could​ ​not​ ​account​ ​for​ ​the​​data​​in​​the​
​Boldt​​et​​al.​​(2019)​​dataset.​​We​​again​​found​​that​​the​​Bayesian​​model​​was​​the​​best​​fitting​​model​​(Exp.​​1:​
​p​​model​ ​=​​.94;​​p​​exc.​ ​>​​.99;​​p​​p.exc.​ ​>​​.99;​​Exp.​​2:​​p​​model​ ​=​​.96;​​p​​exc.​​>​​.99;​​p​​p.exc.​ ​>​​.99;​​Figure​​2b​​and​​Figure​​2d),​
​as​​it​​was​​able​​to​​capture​​the​​decrease​​in​​value​​confidence​​levels​​as​​the​​standard​​deviation​​of​​the​​options​
​reward distributions increased (Figure 2b).​

​Figure​​2​​–​​Value​​confidence​​is​​captured​​by​​a​​Bayesian​​model.​ ​(a)​​Model​​fitting​​results​​for​​the​​two​​best​​models​
​in​ ​the​ ​Boldt​ ​et​ ​al.​​(2019)​​data:​​the​​Bayesian​​model,​​where​​value​​confidence​​reflects​​the​​inverse​​of​​the​​standard​
​deviation​ ​of​ ​the​ ​posterior​ ​distribution​ ​over​ ​an​ ​option’s​ ​inferred​ ​value,​ ​and​ ​the​ ​Rescorla-Wagner​ ​model,​​where​
​value​ ​confidence​ ​equals​ ​to​ ​the​ ​square​ ​root​ ​of​ ​the​ ​number​ ​of​ ​rewards​ ​observed​ ​of​ ​a​​specific​​option.​​First​​row:​



​models’​​fits​​to​​all​​the​​data.​​As​​blocks​​had​​different​​lengths,​​we​​divided​​blocks​​in​​four​​quantiles​​with​​respect​​to​​the​
​trials​ ​to​​be​​able​​to​​pool​​all​​blocks​​together​​(x​​axis).​​Second​​row:​​example​​of​​models’​​fits​​in​​one​​block​​only.​​(b)​
​Model​​fitting​​results​​to​​the​​Quandt​​et​​al.​​(2022)​​data.​​First​​row:​​models’​​fits​​to​​Exp.​​1​​data.​​Second​​row:​​models’​
​fits​ ​to​ ​Exp.​ ​2​ ​data.​ ​Models​ ​that​ ​are​ ​a​ ​function​ ​of​ ​the​ ​number​ ​of​ ​rewards​ ​experienced​​(such​​as​​the​​RW​​sqrt(n)​
​model)​​cannot​​account​​for​​the​​negative​​effect​​that​​the​​spread​​of​​the​​reward​​distribution​​has​​on​​value​​confidence.​
​(c)​ ​Model​ ​comparison​ ​results.​ ​The​ ​Bayesian​ ​model​ ​was​ ​the​ ​best​ ​fitting​ ​model​ ​in​ ​Boldt​ ​et​ ​al.​ ​(2019)​​data.​​(d)​
​Model​ ​comparison​ ​results.​ ​The​​Bayesian​​model​​was​​the​​best​​fitting​​model​​in​​both​​experiments​​in​​Quandt​​et​​al.​
​(2022)​​data.​​In​​panels​​(a)​​and​​(b)​​error​​bars​​represent​​the​​standard​​error​​of​​the​​mean​​(SEM)​​of​​the​​behavioral​​data,​
​shaded regions represent the SEM of models’ predictions and dots represent individual averages.​

​Value confidence modulates the exploration-exploitation trade-off​

​A​ ​central​ ​functional​ ​role​ ​proposed​ ​for​ ​confidence​ ​is​ ​to​ ​regulate​ ​the​ ​balance​ ​between​ ​exploration​ ​and​
​exploitation​ ​during​ ​learning​ ​(Boldt​ ​et​ ​al.,​ ​2019).​ ​Indeed,​ ​it​ ​is​​reasonable​​for​​an​​agent​​learning​​from​​the​
​environment​​to​​increase​​exploitation​​as​​it​​becomes​​more​​certain​​about​​the​​values​​of​​the​​options​​at​​play.​
​To​​test​​whether​​value​​confidence​​serves​​this​​adaptive​​control​​function,​​we​​extended​​the​​Bayesian​​model​
​to​​include​​a​​parameter,​ ​,​​that​​modulates​​decision​​noise​​as​​a​​function​​of​​value​​confidence​​(see​​Methods​​𝑏​

​1​

​section​​and​​Figure​​3a).​​A​​positive​ ​indicates​​that​​decisions​​become​​more​​deterministic—that​​is,​​more​​𝑏​
​1​

​exploitative—as​ ​value​ ​confidence​ ​increases.​ ​For​ ​testing​ ​this​ ​idea,​ ​we​ ​leveraged​ ​on​ ​the​ ​decision​ ​data​
​from​​Boldt​​et​​al.​​(2019)​​experiment​​2​​study​​(N=30),​​and​​in​​two​​new​​studies​​conducted​​in​​our​​laboratory​
​(N=29​ ​and​ ​N=30;​ ​the​ ​latter​ ​a​ ​pre-registered​ ​replication).​ ​In​ ​all​ ​cases,​ ​participants​ ​performed​ ​a​​classic​
​two-armed​ ​bandit​ ​task​ ​in​ ​which​ ​they​ ​had​ ​to​ ​choose​ ​between​ ​two​ ​options​​and​​rate​​their​​confidence​​on​
​having selected the best one. After that, they saw the reward obtained.​

​To​ ​assess​ ​whether​ ​value​​confidence​​modulates​​the​​exploration–exploitation​​balance,​​we​​compared​​the​
​Bayesian​​model​​including​​the​​the​ ​parameter​​against​​the​​same​​model​​not​​including​​the​​parameter​​i.e.,​​𝑏​

​1​

​a​​model​​with​​constant​​decision​​noise.​​We​​found​​that​​the​​model​​including​ ​better​​explained​​the​​decision​​𝑏​
​1​

​data​​in​​all​​datasets​​(Boldt​​et​​al.​​dataset:​​p​​model​ ​=​​.96;​​p​​exc.​​>​​.99;​​p​​p.exc.​​>​​.99;​​Study​​1:​​p​​model​​=​​.82;​​p​​exc.​​>​​.99;​
​p​​p.exc.​​=​​.98;​​Study​​2:​​p​​model​​=​​.85;​​p​​exc.​​>​​.99;​​p​​p.exc.​​>​​.99).​​Note​​that​​the​​main​​divergence​​between​​models​
​emerged​ ​toward​ ​the​ ​end​ ​of​ ​each​ ​block,​ ​in​ ​line​ ​with​ ​the​ ​increase​ ​of​ ​exploitation​ ​as​ ​value​ ​confidence​
​accumulates​ ​(Figure​ ​3b,​ ​first​ ​and​ ​second​ ​rows).​ ​We​​also​​found​​that​​the​ ​parameter​​was​​significantly​​𝑏​

​1​

​greater​ ​than​ ​zero​ ​in​ ​the​ ​three​ ​datasets​ ​employed​ ​(Boldt​ ​et​ ​al.​ ​dataset:​ ​t​​29​ ​=​ ​8.76;​ ​p​ ​<​ ​.001,​ ​d​ ​=​ ​1.60;​
​Study​​1:​​t​​28​​=​​3.95;​​p​​<​​.001,​​d​​=​​0.73;​​Study​​2:​​t​​29​​=​​5.58;​​p​​<​​.001,​​d​​=​​1.02;​​Figure​​3b,​​third​​row),​​further​
​validating the proposed mechanism.​



​Figure​ ​3​ ​–​ ​Value​ ​confidence​ ​modulates​ ​the​ ​exploration-exploitation​ ​trade-off.​ ​(a)​ ​Illustration​ ​of​ ​an​ ​agent’s​
​behaviour​​if​​the​ ​parameter​​is​​positive.​​In​​such​​a​​case,​​as​​value​​confidence​​increases​​decision​​noise​​decreases​​𝑏​

​1​
​because​ ​the​ ​slope​ ​of​ ​the​ ​softmax​ ​increases.​ ​This​ ​results​ ​in​ ​more​ ​exploitative​ ​decisions​ ​as​ ​value​ ​confidence​
​increases​​throughout​​the​​trials.​​(b)​​Model​​fitting​​results​​of​​the​​models​​without​​(first​​row)​​and​​with​​(second​​row)​
​dynamic​​decision​​noise​​(i.e.:​​without​​and​​with​​the​ ​parameter).​​Dashed​​lines​​in​​these​​two​​rows​​represent​​chance​​𝑏​

​1​
​level​​performance​​(i.e.:​​a​​proportion​​of​​correct​​choices​​equal​​to​​.5).​​The​​third​​row​​depicts​​the​​distribution​​of​​the​

​parameter​​across​​the​​three​​datasets​​analysed.​​Regarding​​the​​columns,​​the​​first​​column​​represents​​Boldt​​et​​al.​​𝑏​
​1​

​data,​ ​the​​second​​column​​the​​Study​​1​​data​​and​​the​​third​​column​​the​​Study​​2​​data.​​(c)​​Model​​comparison​​results.​
​The​​model​​that​​includes​​the​​modulation​​of​​decision​​noise​​by​​value​​confidence​​was​​the​​best​​fitting​​model​​across​
​the three datasets. The conventions in this figure are equal to the ones in Figure 2​​.​

​Decision confidence deviates from the probability of being correct​

​Having​​established​​that​​value​​confidence​​and​​choice​​behavior​​are​​well​​described​​by​​Bayesian​​inference,​
​we​ ​next​ ​evaluated​ ​whether​ ​the​ ​same​ ​Bayesian​ ​model​ ​could​ ​also​ ​explain​ ​decision​ ​confidence​​—the​
​subjective​ ​certainty​ ​that​ ​a​ ​chosen​ ​option​ ​is​ ​correct.​ ​According​ ​to​ ​the​ ​Bayesian​ ​confidence​ ​hypothesis​
​(Meyniel,​ ​Sigman,​ ​et​ ​al.,​ ​2015;​ ​Sanders​​et​​al.,​​2016),​​confidence​​should​​reflect​​the​​probability​​of​​being​
​correct.​​Interestingly,​​while​​this​​model​​was​​able​​to​​capture​​the​​pattern​​of​​confidence​​in​​correct​​trials​​(​​r​​118​ ​=​
​0.87;​​p​​<​​.001),​​it​​failed​​to​​account​​for​​confidence​​in​​incorrect​​trials​​(​​r​​118​ ​=​​0.54;​​p​​<​​.001;​​Figure​​4b​​and​
​Figure​​4c,​​top​​row).​​Indeed,​​the​​Bayesian​​model​​predicts​​that​​confidence​​should​​progressively​​increase​
​across​ ​trials​ ​for​ ​correct​ ​responses​ ​but​ ​decrease​ ​for​ ​the​ ​incorrect​ ​ones,​ ​a​ ​signature​ ​known​ ​as​ ​the​
​“folded-x​ ​pattern”​ ​of​ ​Bayesian​ ​confidence​ ​(Hangya​ ​et​ ​al.,​ ​2016;​ ​Sanders​ ​et​ ​al.,​ ​2016).​ ​Inspired​ ​by​
​Navajas​​et​​al.​​(2017),​​in​​which​​a​​similar​​deviation​​of​​Bayesian​​confidence​​in​​incorrect​​trials​​was​​found​​but​
​in​ ​categorical​ ​decisions,​ ​we​ ​constructed​ ​an​ ​Bayesian-hybrid​ ​model,​ ​where​ ​confidence​ ​reflects​ ​a​
​weighted​​combination​​of​​the​​probability​​of​​being​​correct​​(i.e.:​​the​​Bayesian​​confidence​​computation)​​and​
​the​ ​precision​ ​of​​the​​decision​​variable.​​This​​model​​was​​able​​to​​capture​​decision​​confidence​​data​​both​​in​
​correct​​(​​r​​118​ ​=​​0.94;​​p​​<​​.001)​​and​​incorrect​​trials​​(​​r​​118​ ​=​​0.92;​​p​​<​​.001;​​Figure​​4b​​and​​Figure​​4c,​​bottom​
​row),​​and​​provided​​the​​best​​fit​​in​​two​​out​​of​​the​​three​​evaluated​​datasets​​(Boldt​​et​​al.:​​p​​model​ ​=​​0.5;​​p​​exc.​​=​
​0.5;​​p​​p.exc.​​=​​0.5;​​Study​​1:​​p​​model​ ​=​​0.9;​​p​​exc.​​>​​0.99;​​p​​p.exc.​​>​​0.99;​​Study​​2:​​p​​model​ ​=​​0.81;​​p​​exc.​​>​​0.99;​​p​​p.exc.​​>​
​0.99;​ ​Figure​ ​4d).​ ​Across​ ​the​​three​​studies,​​in​​65​​out​​of​​89​​participants​​the​​hybrid​​model​​was​​preferred.​
​We​​also​​evaluated​​a​​family​​of​​models​​that​​ignore​​option​​uncertainty​​and​​rely​​solely​​on​​estimated​​option​
​values​ ​(as​ ​in​​Desender​​&​​Verguts,​​2024;​​Salem-Garcia​​et​​al.,​​2023).​​A​​confidence​​model​​incorporating​
​chosen​ ​option’s​ ​value​ ​emerged​ ​as​ ​a​ ​reasonable​​alternative,​​but​​it​​failed​​to​​capture​​behaviour​​in​​bandit​



​tasks​ ​where​ ​both​ ​the​ ​mean​ ​and​ ​variance​ ​of​ ​reward​ ​distributions​ ​are​ ​manipulated​ ​(see​ ​Methods​ ​&​
​Supplementary material).​

​Figure​​4​​–​​Decision​​confidence​​deviates​​from​​the​​probability​​of​​being​​correct​​.​​(a)​​Schematic​​representation​​of​
​the​ ​models.​ ​The​ ​subtraction​ ​between​ ​the​ ​two​ ​options’​ ​expected​ ​values​ ​posterior​ ​distributions​ ​(i.e.:​ ​chosen​
​posterior​​–​​unchosen​​posterior)​​creates​​a​​decision​​variable.​​In​​such​​a​​case,​​the​​probability​​of​​being​​correct​​is​​the​
​area​ ​of​ ​this​ ​distribution​ ​that​ ​is​ ​greater​ ​than​ ​zero.​ ​This​ ​probability​ ​of​ ​being​ ​correct​ ​represents​ ​the​ ​Bayesian​
​confidence​ ​(top​ ​panel).​ ​The​ ​Bayesian-hybrid​ ​model​ ​(lower​ ​panel)​​combines​​this​​probability​​with​​the​​precision​
​(i.e.:​ ​the​ ​inverse​ ​of​ ​the​ ​standard​ ​deviation)​ ​of​ ​this​​decision​​variable​​distribution.​​(b)​​Model​​fitting​​results.​​The​
​Bayesian​ ​model​ ​can​ ​capture​ ​correct​ ​trials​ ​but​ ​its​ ​prediction​ ​deviates​ ​from​ ​the​​data​​specially​​in​​incorrect​​trials​
​(top-row).​ ​The​ ​Bayesian-hybrid​ ​model,​ ​on​ ​the​ ​other​ ​hand,​ ​can​ ​account​ ​for​ ​both​ ​correct​ ​and​ ​incorrect​ ​trials​
​(bottom-row).​​(c)​​Correlations​​between​​models’​​predictions​​and​​the​​data.​​Both​​models’​​predicted​​confidence​​and​
​empirical​​confidence​​data​​were​​rescaled​​to​​a​​range​​from​​0​​to​​1​​before​​computing​​the​​correlations​​(as​​confidence​
​scales​ ​differed​ ​between​ ​datasets).​ ​The​ ​same​ ​pattern​ ​is​​found:​​the​​Bayesian​​model​​predictions​​deviate​​from​​the​
​data​​specially​​in​​incorrect​​trials,​​where​​the​​correlation​​is​​considerably​​diminished.​​(d)​​Model​​comparison​​results.​
​The​ ​hybrid​ ​model​ ​was​ ​the​ ​best​ ​fitting​ ​model​ ​in​ ​two​ ​out​​of​​three​​datasets.​​Considering​​all​​the​​data,​​the​​hybrid​
​model was the preferred model for 65 out of 89 participants.​

​Individual signatures of decision confidence reveal distinct behavioural profiles​

​Having​ ​established​ ​a​ ​population-level​ ​deviation​ ​from​ ​Bayesian​ ​confidence,​ ​we​​next​​examined​​whether​
​individuals​​differ​​systematically​​in​​how​​they​​combine​​the​​probability​​of​​being​​correct​​and​​the​​precision​​of​
​the​ ​decision​ ​variable​ ​when​ ​reporting​​confidence.​​Following​​Navajas​​et​​al.​​(2017)​​we​​ran​​ordered​​linear​
​regressions​​for​​each​​participant​​predicting​​decision​​confidence​​using​​the​​mentioned​​latent​​variables​​from​
​the​ ​Bayesian-hybrid​ ​model.​ ​This​ ​yielded​ ​two​ ​regression​ ​coefficients—one​ ​for​​p(correct),​ ​,​​and​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​one​ ​for​ ​precision,​ ​—quantifying​ ​each​ ​individual’s​​reliance​​on​​these​​sources​​of​​information​​(Fig.​β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

​5a).​

​We​ ​then​ ​asked​ ​whether​ ​these​ ​computational​ ​weights​ ​were​ ​related​ ​to​ ​task​ ​and​ ​metacognitive​
​performances.​ ​First,​ ​we​ ​ran​ ​a​ ​linear​ ​regression​ ​predicting​ ​task​ ​performance​ ​using​ ​both​ ​and​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​as​ ​well​ ​as​ ​their​ ​interaction.​ ​We​ ​found​ ​that​ ​higher​ ​values​ ​were​ ​predictive​ ​of​ ​higher​β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​performance​ ​(​ ​=​ ​0.053;​ ​p​ ​<​ ​.001;​ ​Figure​ ​5b,​​left),​​but​ ​values​​were​​not​​(​ ​=​​–0.034;​​p​​=​​.233;​β β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

β

​Figure​ ​5b,​ ​right).​ ​No​ ​interaction​​was​​found​​between​​the​​two​​predictors​​(​ ​=​​–0.009;​​p​​=​​.538).​​Second,​β
​using​ ​a​ ​linear​ ​regression​ ​again,​ ​we​ ​evaluated​ ​whether​ ​these​ ​beta​ ​values​ ​were​ ​associated​ ​with​ ​the​​b​​1​

​parameter​ ​values​ ​(i.e.,​ ​the​ ​parameter​ ​that​ ​controlled​ ​the​ ​modulation​ ​by​ ​value​ ​confidence​ ​of​ ​the​



​exploration-exploitation​​trade-off).​​We​​found​​that​​higher​ ​values​​were​​associated​​with​​higher​​b​​1​β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​parameter​ ​values​ ​(​ ​=​ ​0.313;​ ​p​ ​<​ ​.001;​ ​Figure​ ​5c,​​left),​​while​ ​values​​were​​not​​(​ ​=​​0.082;​​p​​=​β β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

β

​.564;​​Figure​​5c,​​right),​​and​​no​​interaction​​was​​found​​between​​the​​two​​predictors​​(​ ​=​​–0.056;​​p​​=​​.442).​β
​Finally,​ ​for​ ​evaluating​ ​metacognition—the​ ​ability​ ​to​ ​distinguish​ ​between​ ​correct​ ​and​ ​incorrect​
​decisions—we​ ​run​ ​logistic​ ​regressions​ ​on​ ​each​ ​participant​ ​predicting​ ​accuracy​ ​from​ ​confidence​
​judgments.​ ​We​ ​found​ ​that,​ ​as​ ​expected,​ ​larger​ ​values​ ​were​ ​associated​ ​with​ ​higher​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​metacognition​​(​ ​=​​1.056;​​p​​<​​.001;​​Figure​​5d,​​left),​​but​​no​​relationship​​was​​found​​between​​metacognition​β
​and​ ​(​ ​=​​0.338;​​p​​=​​.104;​​Figure​​5d,​​right).​​This​​time,​​however,​​a​​negative​​interaction​​was​​found,​β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
β

​suggesting​ ​that​ ​at​ ​higher​ ​values​ ​of​ ​the​​positive​​effect​​of​ ​diminished​​(​ ​=​​–0.224;​​p​​=​β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

β

​.035).​ ​Together,​ ​these​ ​results​ ​indicate​ ​that​ ​variability​ ​in​ ​confidence​ ​computation​ ​reflects​ ​distinct​
​behavioral​​phenotypes​​rather​​than​​mere​​idiosyncrasies​​in​​reporting.​​Indeed,​​participants​​who​​relied​​more​
​heavily​ ​on​ ​Bayesian​ ​computations​ ​of​ ​confidence​ ​tended​​to​​make​​more​​accurate​​decisions​​(Figure​​5b),​
​used​ ​their​ ​value​ ​confidence​ ​more​ ​effectively​ ​to​ ​guide​ ​exploitative​ ​choices​ ​(Figure​ ​5c),​ ​and​ ​showed​
​greater​​accuracy​​in​​evaluating​​the​​correctness​​of​​their​​decisions​​(Figure​​5d).​​In​​contrast,​​greater​​reliance​
​on​ ​precision​ ​computation​ ​proved​ ​suboptimal:​ ​it​ ​impaired​ ​metacognitive​ ​accuracy​ ​while​ ​exerting​ ​no​
​detectable influence on performance exploration-exploitation strategies.​

​Figure​ ​5​ ​–​ ​Interindividual​ ​differences​ ​on​ ​confidence​ ​judgments​ ​predict​ ​task​ ​performance.​ ​(a)​ ​We​ ​found​
​substantial​ ​individual​ ​variation​ ​in​ ​the​ ​way​​decision​​confidence​​was​​reported.​​By​​running​​a​​regression​​using​​the​
​latent​​variables​​from​​the​​model,​​that​​is​​the​​probability​​of​​being​​correct​​and​​the​​precision​​of​​the​​decision​​variable,​
​we​ ​were​ ​able​ ​to​ ​quantify​ ​this​ ​variation.​ ​Here​ ​we​ ​plot​ ​the​ ​beta​ ​values​ ​associated​ ​with​ ​the​ ​mentioned​ ​latent​
​variables:​ ​and​ ​.​ ​Participants​ ​that​​had​​both​​betas​​with​​positive​​values​​showed​​a​​pattern​​where​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
​confidence​ ​tended​ ​to​ ​increase​ ​in​ ​both​ ​correct​ ​and​ ​incorrect​ ​decisions​ ​(Participant​ ​A​ ​and​ ​Participant​​B),​​or​​not​
​decrease​ ​in​ ​incorrect​ ​decisions​ ​(Participant​ ​C).​ ​Participants​ ​with​ ​near​ ​zero​ ​beta​ ​values​ ​had​ ​a​ ​more​β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
​Bayesian​ ​style​ ​of​ ​confidence​ ​reporting​ ​(illustrated​ ​by​ ​Participant​ ​D​ ​and​ ​Participant​ ​E).​ ​Interestingly,​ ​several​
​participants​ ​had​ ​negative​ ​values.​ ​At​ ​first​ ​value,​ ​this​ ​is​ ​surprising​ ​as​ ​an​ ​increase​ ​in​ ​precision​ ​should​β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
​intuitively​​lead​​to​​greater​​confidence.​​However,​​the​​Bayesian​​model​​was​​the​​best​​model​​for​​virtually​​all​​of​​these​
​participants​​(lightblue​​dots;​​note​​for​​instance​​the​​pattern​​of​​confidence​​judgments​​for​​Participant​​E),​​pointing​​out​
​that​​the​​precision​​variable​​here​​should​​not​​be​​contributing​​and​​therefore​​its​​negative​​value​​suggests​​overfitting​​of​
​the​ ​regression​ ​model.​ ​Note,​ ​however,​ ​that​ ​for​ ​some​ ​of​ ​these​ ​participants,​ ​like​ ​Participant​ ​F,​ ​a​ ​negative​ ​value​
​appears​ ​to​ ​be​ ​justified​ ​as​ ​indeed​ ​her​ ​confidence​ ​decreased​ ​throughout​ ​the​ ​trials,​​that​​is,​​as​​precision​​increases.​



​Finally,​​some​​participants​​had​​negative​ ​values,​​which​​consequently​​led​​to​​a​​poor​​metacognitive​​ability​β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​as​ ​incorrect​ ​decisions​ ​were​ ​associated​ ​with​ ​higher​ ​confidence​ ​(Participant​ ​G).​ ​(b)​ ​Increasing​ ​values​ ​of​ ​the​
​predicted​ ​higher​ ​task​ ​performance.​ ​(c)​ ​As​ ​with​ ​task​ ​performance,​ ​the​ ​values​ ​predicted​ ​the​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
​values​ ​of​ ​the​ ​b​​1​ ​parameter​ ​(the​ ​parameter​ ​that​ ​controlled​ ​the​ ​exploration-exploitation​ ​trade-off​ ​with​​increasing​
​value​ ​confidence​ ​levels).​ ​(d)​ ​As​ ​in​ ​the​ ​b​​1​ ​parameter​ ​case,​ ​only​ ​values​ ​were​ ​associated​ ​with​ ​the​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
​metacognitive​ ​ability​ ​of​ ​the​ ​participants,​ ​that​ ​is,​ ​their​​ability​​to​​distinguish​​their​​correct​​and​​incorrect​​decisions​
​with​ ​their​ ​confidence​ ​judgments.​ ​Note,​ ​however,​ ​that​ ​in​ ​this​ ​case​ ​a​​negative​​interaction​​between​​the​​two​​betas​
​were​ ​found,​ ​meaning​ ​that​ ​increasing​ ​values​ ​of​ ​negatively​ ​affected​ ​the​ ​ability​ ​of​ ​to​ ​predict​β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​metacognition.​

​Discussion​

​Overall,​​our​​results​​reveal​​how​​value​​and​​decision​​confidence​​arise​​and​​interact​​in​​human​​reinforcement​
​learning.​ ​By​ ​quantifying​ ​inter-individual​ ​differences​ ​in​ ​these​ ​two​ ​forms​ ​of​ ​confidence​ ​computations​ ​we​
​uncovered​​different​​behavioral​​patterns,​​where​​participants​​whose​​confidence​​computations​​more​​closely​
​matched​​the​​Bayesian​​model​​showed​​higher​​task​​performance​​and​​metacognitive​​accuracy—in​​line​​with​
​normative principles of decision-making.​

​Value​ ​confidence—the​ ​certainty​ ​in​ ​the​ ​estimated​ ​values​ ​of​ ​available​ ​options—was​ ​best​ ​captured​ ​by​
​Bayesian​​computations,​​reflecting​​the​​precision​​of​​a​​posterior​​distribution​​over​​those​​values.​​This​​aligns​
​with​ ​several​ ​findings​ ​in​ ​the​ ​literature​ ​where​ ​Bayesian​ ​models​ ​capture​ ​human​​learning​​remarkably​​well​
​(Bounmy​ ​et​​al.,​​2023;​​Gershman,​​2018;​​Kang​​et​​al.,​​2024;​​Meyniel,​​2020;​​Meyniel,​​Schlunegger,​​et​​al.,​
​2015).​ ​Our​ ​work​ ​further​ ​strengthens​ ​this​ ​notion​ ​by​ ​validating​ ​the​ ​predictions​ ​of​ ​these​ ​models​ ​not​​only​
​against​​choice​​behavior​​but​​also​​against​​participants’​​explicit​​value​​confidence​​ratings,​​providing​​a​​more​
​direct​ ​test​ ​of​ ​the​ ​model’s​ ​internal​ ​variables.​ ​It​ ​should​ ​be​ ​noted,​ ​however,​ ​that​ ​human​ ​reinforcement​
​learning​ ​is​ ​not​ ​always​ ​strictly​ ​normative.​ ​Perhaps​ ​the​ ​most​ ​prominent​ ​deviations​ ​from​ ​normative​
​behaviour​​in​​human​​reinforcement​​learning​​are​​the​​positivity​​and​​the​​confirmation​​biases,​​weighting​​new​
​evidence​ ​more​ ​heavily​ ​when​ ​it​ ​is​ ​associated​ ​with​ ​a​ ​positive​ ​valence​ ​or​ ​consistent​ ​with​ ​prior​ ​beliefs​
​(Chambon​​et​​al.,​​2020;​​Lefebvre​​et​​al.,​​2017;​​Palminteri​​et​​al.,​​2017).​​These​​effects​​are​​usually​​modelled​
​using​ ​separate​ ​learning​ ​rates​ ​for​ ​positive​ ​or​ ​confirmatory​ ​evidence,​ ​allowing​ ​for​ ​a​ ​greater​ ​update​ ​of​
​positive​ ​and​ ​confirmatory​ ​information​ ​(Palminteri​ ​&​ ​Lebreton,​ ​2022).​ ​Given​ ​that​ ​we​ ​focused​ ​on​ ​the​
​computations​​underlying​​the​​uncertainty​​around​​the​​estimated​​values—rather​​than​​the​​estimated​​values​
​per​ ​se—it​ ​remains​ ​to​ ​be​ ​tested​​whether​​including​​separate​​learning​​rates​​would​​further​​improve​​model​
​fits.​ ​Interestingly,​ ​recent​ ​work​ ​has​ ​proposed​ ​that​ ​these​​apparent​​biases​​can​​themselves​​emerge​​under​
​Bayesian​ ​principles​ ​(Godara,​ ​2025)—which​ ​may​ ​align​ ​with​ ​their​ ​evolutionary​ ​value​ ​(Hoxha​ ​et​ ​al.,​
​2025)—therefore being a possibility that Bayesian updating can suffice to explain these phenomena.​

​Extending​ ​the​ ​Bayesian​ ​framework​ ​to​ ​decision​ ​data,​ ​we​ ​found​ ​that​ ​value​ ​confidence​ ​acts​ ​as​ ​a​ ​key​
​variable​ ​modulating​ ​the​ ​exploration-exploitation​ ​trade-off.​ ​Indeed,​ ​as​ ​certainty​ ​increased​ ​over​ ​trials,​
​decision​ ​noise​ ​systematically​ ​decreased,​ ​resulting​ ​in​ ​more​ ​exploitative​ ​decisions​ ​(see​ ​Desender​ ​&​
​Verguts,​ ​2024,​ ​for​ ​a​ ​similar​ ​result​ ​but​ ​using​ ​decision​ ​confidence​ ​rather​ ​than​ ​value​ ​confidence​ ​as​ ​a​
​modulatory​ ​signal).​ ​This​ ​aligns​ ​closely​ ​with​ ​Thompson​ ​sampling​ ​algorithms​ ​where​ ​an​ ​agent​ ​explores​
​more​ ​if​ ​uncertainty​ ​is​ ​higher​ ​(Gershman,​ ​2018).​ ​It​ ​should​ ​be​ ​noted,​ ​however,​ ​that​ ​human​ ​behavior​
​sometimes​ ​departs​ ​from​ ​this​ ​principle.​ ​In​ ​directed​ ​exploration​ ​cases,​ ​for​ ​instance,​ ​humans​ ​tend​ ​to​
​deliberately​ ​select​ ​more​ ​uncertain​ ​options​ ​(Abir​ ​et​ ​al.,​ ​2024;​ ​Gershman,​ ​2018).​ ​For​ ​other​ ​choice​
​scenarios​ ​where​ ​direct​ ​and​ ​random​ ​exploration​ ​are​ ​likely​​to​​be​​at​​play,​​hybrid​​algorithms​​that​​combine​
​directed​ ​and​ ​random​ ​exploration​ ​better​ ​explain​ ​human​ ​behavior​ ​(Gershman,​ ​2018;​ ​E.​ ​Schulz​ ​&​
​Gershman, 2019).​

​Although​ ​our​ ​model​ ​does​ ​not​ ​aim​ ​to​ ​capture​ ​all​ ​possible​ ​effects​ ​of​ ​(un)certainty​ ​on​ ​learning​ ​and​
​decision-making,​ ​it​ ​highlights​ ​how​​Bayesian​​frameworks—by​​naturally​​representing​​uncertainty​​through​
​precision​ ​metrics—can​ ​be​ ​extended​ ​to​ ​encompass​ ​a​ ​wide​ ​range​ ​of​ ​certainty-driven​ ​influences​ ​on​



​behavior.​ ​For​ ​instance,​ ​Bayesian​ ​models​ ​have​ ​been​ ​used​ ​to​ ​explain​ ​how​ ​balancing​​the​​approach​​and​
​avoidance​ ​of​ ​uncertainty​ ​can​ ​reduce​ ​the​ ​cognitive​ ​costs​ ​of​ ​exploration​ ​in​ ​a​ ​resource-rational​ ​manner​
​(Abir​​et​​al.,​​2024),​​and​​how​​uncertainty​​modulates​​the​​use​​of​​simple​​decision​​heuristics​​that​​imperfectly​
​exploit​​immediate​​rewards​​(Paunov​​et​​al.,​​2024).​​It​​is​​also​​worth​​mentioning​​that,​​outside​​human​​RL​​and​
​Bayesian​ ​modelling,​ ​work​ ​in​ ​value-based​ ​decisions​ ​has​ ​shown​ ​that,​ ​by​ ​fitting​ ​certainty-informed​
​drift-diffusion​ ​models​ ​to​​human​​choices,​​certainty​​about​​options’​​values​​modulates​​not​​only​​choices​​but​
​response​ ​times​ ​(Lee​ ​&​ ​Usher,​ ​2023),​ ​and​ ​that​ ​confidence​ ​provides​ ​a​ ​benefit​ ​signal​ ​for​ ​allocating​
​cognitive​ ​resources​ ​during​ ​decision​ ​formation​ ​(Bénon​ ​et​ ​al.,​ ​2024;​ ​Lee​ ​&​ ​Daunizeau,​ ​2021).​​Including​
​such​ ​models​ ​that​ ​account​ ​for​ ​decision-level​ ​dynamics​ ​as​ ​a​ ​decision​ ​rule​ ​in​ ​RL​​contexts​​could​​provide​
​even more insight into the mechanisms by which confidence guides decisions in uncertain environments.​

​Decision​ ​confidence,​ ​on​ ​the​ ​other​ ​hand,​ ​deviated​ ​from​ ​the​ ​Bayesian​ ​computations​ ​that​ ​accounted​ ​for​
​value​​confidence​​ratings​​and​​decisions.​​This​​is​​inline​​with​​previous​​work​​showing​​deviations​​of​​normative​
​principles​​in​​decision​​confidence​​in​​the​​perceptual​​domain​​(Comay​​et​​al.,​​2023;​​Li​​&​​Ma,​​2020;​​Lisi​​et​​al.,​
​2020;​ ​Miyoshi​ ​&​ ​Sakamoto,​ ​2025;​ ​Xue​ ​et​ ​al.,​ ​2024)​ ​as​ ​well​ ​as​ ​in​ ​reinforcement​ ​learning​ ​tasks​
​(Salem-Garcia​ ​et​ ​al.,​ ​2023;​ ​Ting​ ​et​ ​al.,​ ​2023).​ ​Specifically,​ ​confidence​ ​departed​ ​from​ ​Bayesian​
​predictions​ ​specially​ ​on​ ​incorrect​ ​trials,​ ​violating​ ​the​ ​well-known​ ​“folded-x​ ​pattern”​ ​of​ ​confidence:​ ​with​
​increasing​ ​evidence,​ ​confidence​ ​should​ ​increase​ ​for​ ​correct​ ​trials​ ​but​ ​decrease​ ​for​ ​incorrect​ ​ones​
​(Hangya​​et​​al.,​​2016;​​Sanders​​et​​al.,​​2016)—although​​it​​should​​be​​noted​ ​that​​this​​pattern​​is​​not​​always​​a​
​prediction​​of​​normative​​models​​of​​confidence​​(Adler​​&​​Ma,​​2018;​​Rausch​​&​​Zehetleitner,​​2019).​​Decision​
​confidence​​was​​better​​captured​​by​​a​​weighted​​combination​​of​​two​​sources:​​the​​(Bayesian)​​probability​​of​
​being​ ​correct​ ​and​ ​the​ ​precision​ ​of​ ​the​ ​decision​ ​variable​ ​(which​ ​reflects​ ​the​ ​overall​ ​level​ ​of​ ​value​
​confidence).​ ​Following​ ​the​ ​work​ ​of​ ​Navajas​ ​et​ ​al.​ ​(2017)​ ​in​ ​categorical​ ​decisions,​ ​we​ ​showed​ ​that​​the​
​relative​ ​contributions​ ​of​ ​these​ ​two​ ​sources​ ​of​ ​information​ ​characterized​ ​the​ ​inter-individual​ ​patterns​ ​of​
​decision​ ​confidence,​ ​reinforcing​ ​the​ ​notion​ ​that​ ​confidence​ ​is​ ​constructed​ ​in​ ​an​ ​idiosyncratic​ ​manner.​
​Furthermore,​​the​​idea​​that​​the​​certainty​​about​​the​​options’​​values​​has​​an​​influence​​in​​decision​​confidence​
​has​ ​a​ ​parallelism​ ​in​ ​influential​ ​models​ ​of​ ​confidence​ ​in​ ​perceptual​ ​decisions​ ​where​ ​stimulus​ ​reliability​
​plays​ ​a​ ​key​ ​role​ ​in​ ​confidence​ ​computations​ ​(Boldt​ ​et​ ​al.,​ ​2017;​ ​Hellmann​ ​et​ ​al.,​ ​2023;​ ​Rausch​ ​et​​al.,​
​2018;​​Shekhar​​&​​Rahnev,​​2024)​​pointing​​to​​a​​possible​​cross-domains​​mechanism​​(although​​see​​Brus​​et​
​al.,​ ​2021;​ ​Quandt​ ​et​ ​al.,​ ​2022).​ ​Extending​ ​this​ ​view,​ ​recent​ ​work​ ​has​ ​proposed​ ​that​ ​confidence​ ​itself​
​reflects​​a​​noisy​​estimate​​of​​decision​​reliability​​constrained​​by​​a​​higher-order​​“meta-uncertainty”​​about​​the​
​precision​ ​of​ ​the​ ​decision​ ​variable​ ​(Boundy-Singer​ ​et​ ​al.,​ ​2022).​ ​Incorporating​ ​such​ ​second-order​
​uncertainty​ ​into​ ​learning​ ​frameworks​ ​could​ ​provide​ ​a​ ​fruitful​ ​direction​ ​for​ ​future​ ​research,​ ​offering​ ​a​
​computational​​account​​of​​how​​confidence​​variability​​arises​​not​​only​​from​​task-related​​uncertainty​​but​​also​
​from uncertainty about one’s own inferential precision.​

​Importantly,​ ​these​ ​idiosyncratic​ ​patterns​ ​were​ ​not​ ​merely​ ​descriptive​ ​variations​ ​in​ ​confidence​
​computation,​​but​​reflected​​distinct​​behavioral​​profiles.​​Participants​​whose​​confidence​​computations​​more​
​closely​ ​followed​ ​the​ ​Bayesian​ ​ideal—weighting​ ​the​​probability​​of​​being​​correct​​more​​heavily—achieved​
​higher​ ​overall​ ​accuracy,​ ​relied​ ​more​ ​strongly​ ​on​ ​value​ ​confidence​ ​to​ ​regulate​ ​their​
​exploration-exploitation​ ​balance,​ ​and​ ​exhibited​ ​superior​ ​metacognitive​ ​insight​ ​into​ ​their​ ​own​ ​decisions.​
​This​​suggests​​that​​the​​extent​​to​​which​​individuals​​approximate​​Bayesian​​confidence​​principles​​is​​not​​just​
​a​​matter​​of​​internal​​calibration,​​but​​a​​signature​​of​​more​​adaptive​​learning​​and​​decision-making​​strategies.​
​In​ ​this​ ​line,​ ​given​​that​​alterations​​in​​confidence​​are​​predictable​​of​​symptoms​​across​​multiple​​psychiatric​
​dimensions​ ​(Hoven​ ​et​ ​al.,​ ​2019,​ ​2023),​ ​these​ ​results​ ​may​ ​point​ ​to​ ​a​ ​continuum​ ​between​ ​optimal,​
​Bayesian-like​ ​confidence​ ​computations​ ​and​ ​the​ ​kinds​ ​of​ ​suboptimality​ ​that​ ​characterize​ ​clinical​
​populations.​

​Beyond​ ​idiosyncratic​ ​biases,​ ​recent​ ​work​ ​in​ ​human​ ​RL​ ​has​​shown​​that​​confidence​​judgments​​are​​also​
​shaped​ ​by​ ​systematic​ ​biases​ ​(Salem-Garcia​ ​et​ ​al.,​ ​2023).​ ​Humans​ ​tend​ ​to​ ​overestimate​ ​their​
​accuracy—the​ ​well-known​ ​overconfidence​ ​bias​ ​(Baranski​ ​&​ ​Petrusic,​ ​1994)—and​ ​to​ ​report​ ​higher​
​confidence​​when​​seeking​​gains​​than​​when​​avoiding​​losses,​​a​​phenomenon​​termed​​the​​valence-induced​
​confidence​​bias​​(Lebreton​​et​​al.,​​2018).​​These​​effects​​can​​be​​formally​​accounted​​for​​by​​an​​overweighting​



​of​ ​the​ ​learned​​value​​of​​the​​chosen​​option​​in​​the​​computation​​of​​confidence,​​suggesting​​that​​confidence​
​judgments​ ​partially​ ​inherit​​biases​​originating​​in​​the​​learning​​process.​​Moreover,​​individual​​differences​​in​
​the​ ​learning​ ​parameters​ ​underlying​ ​these​ ​value​ ​biases—such​ ​as​ ​confirmatory​ ​updating​ ​and​
​outcome-context​ ​dependency—predict​ ​the​ ​magnitude​ ​of​ ​metacognitive​ ​biases,​ ​establishing​ ​a​
​computational​​bridge​​between​​biased​​learning​​and​​biased​​confidence​​(Salem-Garcia​​et​​al.,​​2023).​​While​
​the​​Bayesian​​model​​proposed​​here​​does​​not​​explicitly​​capture​​such​​value-​​(although​​see​​Godara,​​2025)​
​and​ ​valence-related​ ​biases,​ ​extended​ ​Bayesian​ ​models—incorporating​ ​for​ ​instance​ ​reward-context​
​dependencies—could​ ​provide​ ​a​ ​fruitful​ ​avenue​ ​for​ ​future​ ​research,​ ​offering​ ​a​ ​unified​ ​computational​
​account​​of​​how​​learned​​values,​​value​​certainty,​​and​​decision​​confidence​​jointly​​give​​rise​​to​​both​​adaptive​
​and biased behavior.​

​Finally,​​given​​that​​this​​recent​​research​​has​​modelled​​decision​​confidence​​using​​estimated​​option​​values​
​but,​ ​unlike​ ​our​ ​approach,​ ​without​ ​incorporating​ ​uncertainty​ ​in​ ​those​ ​estimates​ ​(Desender​ ​&​ ​Verguts,​
​2024;​​Salem-Garcia​​et​​al.,​​2023),​​we​​therefore​​tested​​this​​kind​​of​​models​​on​​our​​datasets,​​as​​they​​offer​​a​
​plausible​ ​alternative​​account​​of​​confidence​​behaviour.​​Consistent​​with​​these​​studies,​​a​​model​​driven​​by​
​the​ ​value​ ​of​ ​the​ ​chosen​ ​option—akin​ ​to​ ​the​ ​“positive​ ​evidence​ ​bias”​ ​widely​ ​reported​ ​in​ ​perceptual​
​decision-making​ ​(Maniscalco​ ​et​ ​al.,​ ​2016;​ ​Peters​ ​et​ ​al.,​ ​2017;​ ​Zylberberg​ ​et​ ​al.,​ ​2012)—provided​ ​a​
​reasonable​ ​fit​ ​(see​ ​Supplementary​ ​material​ ​for​ ​model​ ​fitting​ ​results).​​However,​​it​​deviated​​from​​human​
​behaviour​ ​mainly​ ​on​ ​incorrect​ ​trials,​ ​similarly​ ​to​ ​the​ ​Bayesian​ ​model​ ​(although​ ​over-estimating​ ​rather​
​than​​under-estimating​​confidence​​in​​those​​trials).​​In​​addition,​​this​​model​​struggled​​to​​explain​​confidence​
​patterns​ ​in​ ​a​ ​bandit​ ​task​ ​where​ ​both​ ​the​ ​mean​ ​and​ ​the​ ​variance​ ​of​ ​the​ ​reward​ ​distributions​ ​were​
​manipulated​​(see​​Supplementary​​Material).​​Together,​​these​​findings​​support​​the​​idea​​that​​uncertainty​​in​
​value​​estimates​​plays​​a​​central​​role​​in​​shaping​​confidence​​in​​learning​​settings.​​More​​broadly,​​we​​believe​
​that​ ​future​ ​research​ ​could​ ​exploit​ ​systematic​ ​manipulations​ ​of​ ​reward​​distributions​​to​​further​​dissociate​
​the respective contributions of estimated uncertainty and chosen-option value to decision confidence.​

​By​​linking​​Bayesian​​principles​​of​​learning​​with​​metacognitive​​evaluations​​of​​choice,​​our​​results​​bridge​​two​
​traditionally​ ​separate​ ​literatures—on​ ​reinforcement​ ​learning​ ​and​ ​decision​ ​confidence—into​ ​a​ ​unified​
​account​​of​​behavior​​under​​uncertainty.​​Beyond​​their​​theoretical​​relevance,​​these​​insights​​may​​inform​​how​
​confidence​ ​guides​ ​learning​ ​and​ ​exploration​ ​across​ ​domains,​ ​and​ ​how​ ​its​ ​miscalibration​ ​contributes​ ​to​
​suboptimal decision-making strategies.​

​Methods​

​All data & scripts to reproduce the reported results, as well as the Supplementary material, are available​
​online at:​​osf.io/8tex5​​.​

​Datasets description​

​Here​ ​we​ ​describe​ ​the​ ​nature​ ​of​ ​the​ ​datasets​ ​employed​ ​in​ ​our​ ​study.​ ​For​ ​datasets​ ​that​ ​have​ ​been​
​previously​ ​published,​ ​we​ ​refer​ ​the​ ​reader​ ​to​ ​the​ ​original​ ​publications​​for​​a​​more​​detailed​​description​​of​
​the tasks employed.​

​Value confidence​

​For​​the​​value​​confidence​​analysis,​​we​​employed​​datasets​​from​​two​​previous​​studies.​​First,​​we​​used​​the​
​data​ ​from​ ​the​ ​experiment​ ​1​ ​of​ ​Boldt​ ​et​ ​al.​ ​(2019)​ ​study.​ ​Participants​ ​(N=21)​ ​performed​ ​a​ ​two-armed​
​bandit​ ​task​ ​in​ ​which,​ ​on​​each​​trial,​​they​​observed​​a​​reward​​randomly​​sampled​​from​​one​​of​​the​​options.​
​After​​seeing​​the​​reward,​​participants​​reported​​their​​belief​​on​​the​​mean​​value​​of​​this​​alternative​​and​​their​
​confidence​​on​​this​​estimate​​on​​a​​continuous​​square​​scale.​​Rewards​​were​​drawn​​from​​Beta​​distributions​
​with the following parameters:​

http://osf.io/8tex5


​.​{α = ​1​; ​ ​β = ​3​}; {α = ​2​; ​ ​β = ​3​}; ​ ​{α = ​3​; ​ ​β = ​3​}; ​ ​{α = ​3​; ​ ​β = ​2​}; ​ ​{α = ​3​; ​ ​β = ​1​}

​Participants​ ​performed​ ​600​ ​trials​ ​divided​ ​in​ ​15​ ​blocks​ ​of​ ​different​ ​lengths,​ ​ranging​ ​from​ ​20​ ​trials​​to​​60​
​trials.​ ​Twenty​ ​five​ ​%​​of​​the​​trials​​were​​“decision​​trials”​​where​​participants​​had​​to​​choose​​one​​of​​the​​two​
​options and rate their confidence on having chosen the best one.​

​The​ ​second​ ​dataset​ ​comprised​ ​the​ ​two​​experiments​​carried​​by​​Quandt​​et​​al.​​(2022).​​Both​​experiments​
​followed​ ​identical​ ​procedures,​ ​with​ ​62​ ​participants​ ​in​ ​the​ ​first​ ​one​ ​and​ ​60​ ​in​ ​the​ ​second.​ ​Participants​
​observed​​a​​hundred​​rewards​​from​​one​​alternative​​and​​then​​rated​​their​​belief​​on​​the​​expected​​value​​of​​the​
​option​​and​​their​​confidence​​in​​this​​rating.​​They​​performed​​five​​trials​​with​​each​​alternative,​​for​​a​​total​​of​​six​
​alternatives.​ ​The​ ​rewards​ ​associated​ ​each​ ​alternative​ ​were​ ​drawn​ ​from​ ​Normal​ ​distributions​ ​with​ ​the​
​following parameters:​

{µ = ​80​, σ​ ​ = ​15​}; {µ = ​100​, ​ ​σ​ ​ = ​20​}; {µ = ​120​, ​ ​σ​ ​ = ​30​}; ​ ​{µ = ​130​, ​ ​σ​ ​ = ​40​}; {µ = ​150​, ​ ​σ​ ​ = ​10​};

​.​{µ = ​160​, ​ ​σ = ​5​}

​Decision confidence​

​For​​the​​decision​​confidence​​analysis​​we​​used​​four​​datasets.​​First,​​we​​used​​the​​data​​from​​experiment​​2​​of​
​Boldt​ ​et​ ​al.​ ​(2019)​ ​study.​ ​Participants​ ​(N=30)​ ​performed​ ​a​ ​two-armed​ ​bandit​ ​task​​in​​which​​they​​had​​to​
​choose,​​on​​each​​trial,​​one​​of​​the​​options​​with​​the​​aim​​to​​maximize​​their​​rewards.​​After​​choosing,​​they​​had​
​to​​report​​on​​a​​continuous​​scale​​their​​confidence​​in​​having​​selected​​the​​best​​alternative.​​The​​alternatives’​
​rewards​​distributions​​were​​sampled​​from​​the​​same​​Beta​​distributions​​of​​the​​value​​confidence​​experiment.​
​Participants​ ​performed​ ​600​​trials,​​divided​​in​​15​​blocks​​of​​different​​lengths.​​Block​​length​​ranged​​from​​20​
​trials​ ​to​ ​60​ ​trials.​ ​In​ ​25%​ ​of​ ​the​ ​trials​ ​participants​ ​did​ ​not​ ​make​ ​a​ ​choice​ ​but​ ​instead​ ​reported​ ​their​
​estimated mean value of the options (“rating trials”). These trials were excluded from the analysis.​

​The​​second​​dataset​​corresponded​​to​​a​​study​​conducted​​by​​us​​in​​our​​laboratory​​(“​​Study​​1​​”).​​Participants​
​(N=29)​ ​performed​ ​20​ ​blocks​ ​of​ ​30​ ​trials​ ​of​​a​​two​​armed​​bandit​​task.​​After​​choosing,​​they​​had​​to​​report​
​their​ ​confidence​ ​in​​having​​selected​​the​​best​​option​​on​​a​​1​​(not​​sure​​at​​all)​​to​​4​​(completely​​sure)​​scale.​
​Rewards​ ​were​ ​sampled​ ​from​ ​the​ ​same​ ​Beta​ ​distributions​ ​of​ ​the​ ​Boldt​ ​et​ ​al.​ ​(2019)​ ​study.​ ​The​ ​third​
​dataset​ ​(“​​Study​ ​2​​”)​ ​was​​a​​pre-registered​​replication​​of​​this​​protocol​​(N=30).​​Pre-registration​​is​​available​
​at:​​https://doi.org/10.17605/OSF.IO/Z5TCA​​.​

​We​ ​employed​ ​a​ ​fourth​ ​dataset​ ​(“​​Study​ ​3​​”)​ ​to​ ​differentiate​ ​between​ ​models​ ​with​ ​and​ ​without​ ​including​
​certainty​ ​in​ ​estimated​ ​values​ ​(results​ ​are​ ​reported​ ​in​ ​the​ ​Supplementary​ ​material,​ ​see​ ​also​
​Computational​ ​models​ ​section​ ​for​ ​the​ ​description​ ​of​ ​the​ ​models).​ ​This​ ​dataset​ ​was​ ​similar​ ​as​ ​the​
​previous​​ones,​​with​​participants​​(N=15)​​performing​​20​​blocks​​of​​30​​trials​​of​​a​​two​​armed​​bandit​​task​​and​
​reporting​ ​confidence​ ​on​ ​a​ ​1​ ​to​ ​4​ ​scale​ ​after​ ​each​ ​choice.​ ​However,​ ​the​ ​reward​ ​distributions​ ​were​
​manipulated​​differently​​in​​this​​task.​​Inspired​​by​​Hertz​​et​​al.​​(2018)​​design,​​rewards​​from​​each​​option​​were​
​sampled​ ​from​ ​Gaussian​ ​distributions,​ ​one​ ​with​ ​higher​ ​mean​ ​than​ ​the​ ​other,​ ​thus​ ​constituting​ ​one​
​“correct”​​and​​one​​“incorrect”​​option.​​The​​variances​​of​​each​​one​​could​​independently​​be​​high​​(H​​=​​25​​2​ ​=​
​625)​​or​​low​​(L​​=​​10​​2​ ​=​​100).​​This​​resulted​​in​​a​​design​​with​​four​​experimental​​conditions​​(thus​​participants​
​completing​​5​​blocks​​with​​each​​condition,​​randomly​​ordered​​in​​the​​experimental​​session):​​H-H,​​H-L,​​L-H,​
​L-L,​ ​where​ ​the​ ​first​ ​letter​ ​indicates​ ​the​ ​variance​ ​of​ ​the​​correct​​(higher​​expected​​value)​​and​​the​​second​
​indicates​​the​​variance​​of​​the​​incorrect​​(lower​​expected​​value)​​option.​​The​​mean​​of​​the​​correct​​option​​was​
​sampled​ ​uniformly​ ​from​ ​the​ ​range​ ​{40;​ ​60}​ ​and​ ​the​ ​mean​ ​of​ ​the​ ​incorrect​ ​option​ ​was​​the​​mean​​of​​the​
​correct option minus 30. The difference of value between options, therefore, was always the same.​

https://doi.org/10.17605/OSF.IO/Z5TCA


​Computational models​

​Values and value confidence​

​Two​ ​main​ ​classes​ ​of​ ​models​ ​were​ ​tested​ ​to​ ​account​ ​for​​the​​pattern​​of​​the​​value​​confidence​​data.​​One​
​class​​consisted​​of​​models​​based​​on​​Rescorla-Wagner​​(RW)​​algorithms​​(R.​​A.​​Rescorla​​&​​A.​​R.​​Wagner,​
​1972),​ ​and​ ​the​ ​other​ ​was​ ​based​ ​on​ ​Bayesian​ ​inference.​ ​For​ ​the​ ​RW​ ​models,​ ​expected​ ​values​ ​for​​the​
​options were updated as follows:​

​𝑉​
​𝑡​

= ​𝑉​
​𝑡​−​1​

+ δ(​𝑟​
​𝑡​

− ​𝑉​
​𝑡​−​1​

)

​Were​ ​represents​ ​the​ ​value​ ​of​ ​the​ ​option,​ ​indexes​​the​​trial​​number,​ ​is​​the​​learning​​rate​​parameter​​𝑉​ ​𝑡​ δ
​and​ ​is the reward obtained.​​𝑟​

​For​ ​the​ ​Bayesian​ ​models,​ ​posterior​ ​probability​ ​distributions​ ​of​ ​the​ ​options'​ ​expected​ ​values​ ​were​
​constructed​ ​using​ ​Bayesian​ ​inference.​ ​As​ ​mentioned,​ ​in​ ​the​​Boldt​​et​​al.​​datasets,​​rewards​​were​​drawn​
​from​​Beta​​distributions.​​Therefore,​​a​​Bayesian​​observer​​computes,​​on​​each​​trial,​​a​​posterior​​distribution​
​over​​the​​mean​​of​​a​​Beta​​distribution,​​represented​​by​ ​,​​by​​integrating​​the​​likelihood​​of​​the​​rewards​​given​θ

​and the prior probability of​ ​which we modelled​​as uniform. Formally:​θ θ,

​𝑃​(θ
​𝑡​
​|​​𝑟​

​1​:​𝑡​
)​ ​​~​​ ​​𝑃​(​𝑟​

​1​:​𝑡​
​|​θ)​𝑃​(θ)

​The​​maximum-a-posteriori​​(MAP)​​value​​of​​this​​posterior​​is​​therefore​​the​​predicted​​expected​​value​​of​​the​
​option​ ​on​ ​trial​ ​,​ ​i.e.,​ ​.​ ​These​ ​Bayesian​ ​models​ ​were​ ​implemented​ ​using​ ​Stan​ ​(​​Stan,​ ​2025;​ ​MCMC​​𝑡​ ​𝑉​

​𝑡​

​diagnostics​ ​are​ ​reported​ ​in​ ​the​ ​Supplementary​ ​material).​ ​A​ ​re-parametrization​ ​was​ ​used​ ​to​ ​infer​ ​the​
​mean​ ​of​ ​a​ ​Beta​​distribution.​​Specifically,​​we​​estimated​​the​​parameters​​that​​govern​​the​​shape​​of​​a​​Beta​
​distribution,​ ​and​ ​, and then obtained the mean​​of the Beta as:​α β

​.​θ = α
α+β

​Given​ ​that​ ​in​ ​Quandt​ ​et​ ​al.​ ​(2022)​ ​datasets​ ​rewards​ ​came​ ​from​ ​Normal​ ​distributions,​ ​we​ ​inferred​ ​the​
​options’​​expected​​values​​(​ ​)​​by​​leveraging​​on​​the​​Normal-Normal​​conjugate​​family​​(Johnson,​​2022).​​The​θ
​posterior of​ ​, therefore, was therefore computed​​as follows:​​ ​θ

​𝑃​(θ​|​​𝑟​
​1​:​100​

)​ ​​~​​ ​​𝑁​(​𝑝​ σ​2​

​𝑛​π​2​+σ​2​ + ​𝑟​
​1​:​100​

​𝑛​π​2​

​𝑛​π​2​+σ​2​ , ​ ​ π​2​σ​2​

​𝑛​π​2​+σ​2​ )​ ​

​Where​ ​represents​​the​​mean​​of​​the​​prior​​(which​​we​​set​​at​​zero),​ ​represents​​prior​​variance​​(which​​we​​𝑝​ π​2​

​set​​at​​100,​​thus​​constructing​​an​​uninformative​​prior),​ ​is​​the​​mean​​of​​the​​rewards​​seen​​and​ ​is​​the​​𝑟​
​1​:​100​

σ​2​

​variance​​of​​the​​rewards​​seen​​(i.e.:​​the​​likelihood​​variance).​​The​​subscript​​1:100​​represents​​that​​subjects​
​faced a hundred rewards for each option.​

​Finally,​ ​for​ ​the​ ​dataset​ ​of​ ​Study​ ​3,​ ​reported​ ​in​ ​the​ ​Supplementary​ ​material,​ ​Bayesian​ ​inference​ ​was​
​implemented​ ​using​ ​a​ ​Kalman-filter​ ​following​ ​Gershman​ ​(2018)​ ​to​ ​recursively​ ​infer​​posteriors’​​mean​​(​ ​)​θ

​and variances (​ ​) for each option. Formally:​σ​2​

θ
​𝑡​+​1​

= θ
​𝑡​

+ δ
​𝑡​
(​𝑟​

​𝑡​
− θ

​𝑡​
)

σ
​𝑡​+​1​
​2​ =σ

​𝑡​
​2​ − δ

​𝑡​
σ

​𝑡​
​2​

​where the learning rate​ ​is given by:​δ
​𝑡​



δ
​𝑡​

=
σ

​𝑡​
​2​

σ
​𝑡​
​2​+τ​2​

​where​ ​was​ ​set​ ​to​ ​the​ ​specific​ ​option’s​ ​reward​ ​distribution​ ​variance.​ ​For​ ​all​ ​options​ ​initial​​means​​(​ ​)​τ​2​ θ

​were set at zero and initial​ ​at 100 (uninformative​​prior).​σ​2​

​Given​ ​these​ ​two​ ​modeling​ ​frameworks​ ​for​ ​value​ ​updating​ ​(i.e.:​ ​the​ ​Bayesian​ ​inference​​framework​​and​
​the​ ​RW​ ​framework),​ ​we​ ​compared​ ​several​ ​models​ ​for​ ​explaining​ ​value​ ​confidence.​ ​The​ ​Bayesian​
​framework​ ​naturally​ ​offers​ ​a​ ​measure​ ​for​ ​the​ ​certainty​​associated​​to​​the​​inferred​​values​​of​​the​​options,​
​which​​is​​the​​inverse​​of​​the​​standard​​deviation​​of​​the​​posterior​​distribution​​over​​the​​expected​​value​​of​​the​
​option at play. Thus, under the​​Bayesian model​​, value​​confidence can be expressed as:​

​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​1​
σ

​𝑃​(θ
​𝑡​
​|​​𝑟​

​1​:​𝑡​
)

​Here​ ​represents​​the​​standard​​deviation​​of​​the​​posterior​​distribution​​over​ ​,​​the​​estimated​​value​​of​​the​σ θ
​specific option at play.​

​In​​contrast,​​as​​RW​​algorithms​​do​​not​​have​​an​​explicit​​measure​​of​​certainty​​in​​the​​values​​associated​​with​
​each​ ​alternative,​ ​we​ ​extended​ ​this​ ​approach​ ​with​ ​several​ ​possible​ ​mechanisms​ ​for​ ​computing​ ​value​
​confidence.​ ​The​ ​first​ ​of​ ​these​ ​extensions,​ ​the​ ​RW​ ​surprise​ ​model​​,​ ​defines​ ​value​ ​confidence​ ​as​ ​the​
​inverse of the absolute surprise of the outcome. Formally:​

​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​1​
​|​​𝑟​

​𝑡​
−​𝑉​

​𝑡​−​1​
​|​

​The​ ​second​ ​RW​ ​model​ ​comprised​ ​a​ ​separated​ ​RW​ ​rule​ ​to​ ​track​ ​the​ ​variance​ ​of​ ​the​ ​outcomes​ ​(​​RW​
​tracking variance model​​, Hertz et al., 2018):​

τ
​𝑡​

= τ
​𝑡​−​1​

+ γ[(​𝑟​
​𝑡​

− ​𝑉​
​𝑡​−​1​

)​2​ − τ
​𝑡​−​1​

]

​Here​ ​refers​ ​to​ ​the​ ​computed​ ​variance​ ​of​ ​the​ ​rewards​ ​observed,​ ​and​ ​is​ ​the​ ​variance​ ​learning​​rate.​τ γ
​Value confidence under this model reflected the inverse of the tracked variance, i.e.:​

​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​1​
τ

​𝑡​

​For​ ​the​ ​third​ ​RW​ ​model,​ ​value​ ​confidence​ ​reflected​ ​the​ ​number​ ​of​ ​rewards​ ​observed​ ​of​ ​the​ ​specific​
​option sampled (​​RW n model​​). Let​ ​refers to that​​number; value confidence is represented as:​​𝑛​

​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​𝑛​

​Next,​​based​​on​​the​​RW​​n​​model,​​we​​constructed​​two​​additional​​variants:​​In​​this​​models​​value​​confidence​
​reflects​ ​the​ ​logarithm​ ​of​​the​​number​​of​​rewards​​experienced​​with​​the​​specific​​option​​at​​play​​(​​RW​​log(n)​
​model​​)​​or the square root of the same number (​​RW sqrt(n)​​model​​).​

​Finally,​ ​we​ ​tested​ ​a​ ​weighted​ ​combination​ ​of​ ​the​ ​Bayesian​ ​model,​ ​the​ ​RW​ ​sqrt(n)​ ​model​ ​and​ ​the​ ​RW​
​log(n)​ ​model​ ​with​ ​the​ ​surprise​ ​generated​ ​by​ ​the​ ​outcome.​ ​The​ ​Bayesian-surprise​ ​model​ ​can​ ​be​
​expressed as follows:​

​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​𝑤​ ​1​
σ

​𝑃​(θ
​𝑡​
​|​​𝑟​

​1​:​𝑡​
)

− (​1​ − ​𝑤​)​|​(​𝑟​
​𝑡​

− θ
​𝑡​−​1​

)​|​​ ​

​The​​RW sqrt(n)-surprise model​​can be then stated as:​



​𝑣𝑎𝑙𝑢𝑒​​ ​​𝑐𝑜𝑛𝑓​ = ​𝑤​ ​𝑛​− (​1​ − ​𝑤​)​|​(​𝑟​
​𝑡​

− ​𝑉​
​𝑡​−​1​

)​|​

​And​​the​​RW​​log(n)-surprise​​model​​is​​the​​same​​as​​above​​but​​with​​the​​logarithm​​of​ ​instead​​of​​the​​square​​𝑛​
​root. Note that the weights (​ ​) were independent​​parameters for each model.​​𝑤​

​All​​the​​RW​​models​​were​​tested​​in​​the​​Boldt​​et​​al.​​(2019)​​dataset.​​In​​the​​Quandt​​et​​al.​​(2022)​​dataset​​we​
​only​ ​tested​ ​the​ ​RW​ ​sqrt(n)​ ​model​ ​and​ ​the​ ​RW​ ​tracking​ ​variance​ ​model​ ​given​ ​that​ ​1)​ ​the​ ​RW​ ​sqrt(n)​
​model​​was​​the​​best​​non-Bayesian​​model​​in​​Boldt​​et​​al.​​(2019)​​data;​​2)​​the​​RW​​tracking​​variance​​model​
​was​ ​the​ ​only​ ​non-bayesian​ ​model​ ​including​ ​information​ ​of​ ​the​ ​reward​ ​distribution​ ​variance​ ​for​ ​value​
​confidence,​ ​the​ ​key​ ​manipulation​​in​​Quandt​​et​​al.​​(2022)​​dataset.​​The​​Bayesian​​model​​was​​included​​in​
​all datasets.​

​Decisions and decision confidence​

​The​​decision​​confidence​​experiments​​involved​​classic​​two-armed​​bandit​​tasks​​where​​participants​​chose​
​between​​two​​alternatives​​(which​​we​​will​​represent​​as​ ​and​ ​)​​and​​then​​had​​to​​rate​​their​​confidence​​on​​𝐴​ ​𝐵​
​having​ ​chosen​ ​the​ ​best​ ​option​ ​(see​ ​Datasets​ ​description​ ​section).​ ​Given​ ​that​ ​we​ ​found​ ​that​ ​value​
​confidence​​was​​best​​explained​​by​​a​​Bayesian​​model,​​we​​used​​Bayesian​​inference​​to​​update​​the​​values​
​of​ ​the​ ​options​ ​on​ ​each​​trial​​as​​described​​for​​the​​value​​confidence​​data.​​Bayesian​​inference​​for​​options’​
​posterior​​means​​and​​variances​​on​​each​​trial​​was​​implemented​​in​​Stan​​for​​the​​Boldt​​et​​al.​​(2019),​​Study​​1​
​and​​Study​​2​​datasets​​and​​with​​a​​Kalman-filter​​for​​Study​​3​​dataset,​​as​​described​​in​​the​​Values​​and​​value​
​confidence section above.​

​For fitting decisions, we used a classic softmax equation:​

​𝑃​(​𝑑​
​𝑡​

= ​𝐴​) = ​1​
​1​+​𝑒𝑥𝑝​(−​𝐷𝑉​

​𝑡​
λ)

​Here​ ​represents​ ​the​ ​decision,​ ​represents​ ​the​ ​decision​ ​variable​​(which​​is​ ​,​​note​​that​​𝑑​ ​𝐷𝑉​ ​𝑉​
​𝑡​−​1​
​𝐴​ − ​𝑉​

​𝑡​−​1​
​𝐵​ ​𝑉​

​here​​is​​the​​maximum-a-posteriori​​value​​of​​each​​option),​​and​ ​is​​the​​slope​​of​​the​​sigmoid​​that​​controls​​the​λ
​noise​ ​in​ ​the​ ​decision​ ​process​​as​​an​​inverse​​temperature​​parameter.​​We​​tested​​two​​variations​​for​​fitting​
​decisions.​ ​In​ ​one​ ​of​ ​them​ ​was​ ​treated​ ​as​ ​a​​constant.​​In​​the​​other,​ ​dynamically​​varied​​across​​trials,​λ λ
​being modulated by value confidence in the following way:​

λ
​𝑡​

= ​𝑏​
​0​

+ ​𝑏​
​1​

​1​

σ
​𝐴𝑡​−​1​
​2​ +σ

​𝐵𝑡​−​1​
​2​

​Where​ ​represent​​the​​standard​​deviation​​of​​the​​posteriors​​over​​the​​options’​​expected​​values.​​The​​term​σ
​multiplying​ ​can​​be​​interpreted​​as​​a​​global​​value​​confidence,​​as​​it​​reflects​​the​​inverse​​of​​the​​combined​​𝑏​

​1​

​uncertainty​ ​associated​ ​with​ ​the​ ​value​ ​estimates​ ​of​ ​both​ ​options.​ ​As​ ​long​ ​as​ ​is​ ​positive,​ ​value​​𝑏​
​1​

​confidence​​will​​modulate​​the​​exploration-exploitation​​trade-off​​by​​reducing​​decision​​noise​​with​​increasing​
​values​ ​of​ ​value​ ​confidence.​ ​Conversely,​ ​if​ ​is​ ​indistinguishable​ ​from​ ​zero,​ ​decision​​noise​​is​​constant​​𝑏​

​1​

​across trials and participants do not take into account the options’ uncertainty for making decisions.​

​For​ ​decision​ ​confidence​ ​we​ ​tested​ ​several​ ​models.​ ​In​ ​the​ ​first​ ​one,​ ​confidence​ ​followed​ ​the​ ​Bayesian​
​confidence​​hypothesis​​(Meyniel​​et​​al.,​​2015;​​Sanders​​et​​al.,​​2016),​​i.e.:​​confidence​​reflects​​the​​probability​
​of​ ​being​ ​correct​ ​(​​Bayesian​ ​model​​).​ ​As​ ​the​ ​posteriors​ ​over​ ​options’​ ​expected​ ​values​ ​have​ ​Gaussian​
​shape, this probability can be computed as follows:​

​𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒​ = ​𝑃​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​
​𝑡​
) = Φ(

​𝑉​
​𝑡​−​1​
​𝑐ℎ𝑜𝑠𝑒𝑛​−​𝑉​

​𝑡​−​1​
​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​

σ
​𝑐ℎ𝑜𝑠𝑒𝑛​,​𝑡​−​1​
​2​ +σ

​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​,​𝑡​−​1​
​2​

)



​Where​ ​is​ ​the​ ​standard​ ​cumulative​ ​Gaussian​ ​function.​ ​In​ ​the​ ​second​ ​model,​ ​the​ ​Bayesian-hybrid​Φ
​model​​,​​decision​​confidence​​reflected​​a​​weighted​​sum​​of​​the​​probability​​of​​being​​correct​​and​​the​​certainty​
​of the decision variable (Navajas et al., 2017). Formally:​

​𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒​ = ωΦ(
​𝑉​

​𝑡​−​1​
​𝑐ℎ𝑜𝑠𝑒𝑛​−​𝑉​

​𝑡​−​1​
​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​

σ
​𝑐ℎ𝑜𝑠𝑒𝑛​,​ ​​𝑡​−​1​
​2​ +σ

​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​​ ​,​𝑡​−​1​
​2​

) + (​1​ − ω) ​1​

σ
​𝑐ℎ𝑜𝑠𝑒𝑛​,​ ​​𝑡​−​1​
​2​ +σ

​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​,​ ​​𝑡​−​1​
​2​

​In​​the​​main​​manuscript​​we​​report​​the​​results​​of​​these​​two​​primary​​models.​​However,​​because​​prior​​work​
​on​​confidence​​in​​bandit​​tasks​​has​​relied​​on​​models​​that​​do​​not​​incorporate​​uncertainty​​in​​value​​estimates​
​(Desender​ ​&​ ​Verguts,​ ​2024;​ ​Salem-Garcia​ ​et​ ​al.,​ ​2023),​ ​we​ ​sought​ ​to​ ​assess​ ​whether​ ​including​ ​the​
​certainty​ ​of​ ​the​ ​decision​ ​variable​ ​in​ ​the​ ​Bayesian-hybrid​ ​model​ ​was​ ​indeed​ ​warranted.​ ​To​ ​do​ ​so,​ ​we​
​compared​​its​​fit​​to​​that​​of​​models​​that​​rely​​solely​​on​​the​​estimated​​option​​values.​​Specifically,​​we​​tested​
​two​​extra​​models.​​For​​one​​of​​them,​​confidence​​reflected​​the​​absolute​​difference​​between​​the​​estimated​
​values of the options (​​Mean difference model)​​, i.e.:​

​𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒​​ ​ = ​ ​​|​​𝑉​
​𝑡​−​1​
​𝑐ℎ𝑜𝑠𝑒𝑛​ − ​𝑉​

​𝑡​−​1​
​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​​|​

​For​ ​the​ ​other​ ​extra​ ​model,​ ​and​ ​given​ ​that​ ​the​ ​value​ ​of​ ​the​ ​chosen​ ​option​ ​have​ ​been​ ​identified​ ​as​
​important​​in​​explaining​​decision​​confidence​​both​​in​​bandit​​tasks​​and​​in​​perceptual​​decision​​making​​(i.e.:​
​the​ ​“positive​ ​evidence​ ​bias”,​ ​Zylberberg​ ​et​ ​al.,​ ​2012),​ ​confidence​ ​reflected​ ​a​ ​weighted​ ​sum​ ​of​ ​the​
​absolute​ ​difference​ ​between​ ​the​ ​estimated​ ​values​ ​of​ ​the​ ​options​ ​and​ ​the​ ​value​ ​of​ ​the​ ​chosen​ ​option​
​(​​Mean difference + PEB model​​). Formally:​

​𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒​​ ​ = ω​ ​​|​​𝑉​
​𝑡​−​1​
​𝑐ℎ𝑜𝑠𝑒𝑛​ − ​𝑉​

​𝑡​−​1​
​𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛​​|​ + (​1​ − ω)​ ​​𝑉​

​𝑡​−​1​
​𝑐ℎ𝑜𝑠𝑒𝑛​​ ​

​Model fitting results of these two extra models are reported in the Supplementary material.​

​Model fitting and model comparison procedure​

​We​​fitted​​all​​models​​by​​maximizing​​the​​log-likelihood​​of​​the​​parameters​​given​​each​​subject​​data​​using​​the​
​optim​​function​​in​​R​​with​​the​​simulated​​annealing​​method.​​Ten​​optimization​​routines​​with​​different​​starting​
​points​ ​were​ ​run​ ​per​ ​subject.​ ​The​ ​probability​ ​of​ ​a​​specific​​decision​​was​​given​​by​​the​​softmax​​equations​
​detailed​​above.​​For​​computing​​the​​probability​​of​​confidence​​ratings​​(both​​value​​and​​decision​​confidence)​
​in​ ​the​ ​case​ ​of​ ​Boldt​ ​et​ ​al.​ ​(2019)​ ​datasets​ ​and​ ​our​ ​datasets,​ ​we​ ​used​ ​a​ ​set​ ​of​ ​confidence​ ​criteria,​

​,​​where​ ​is​​the​​number​​of​​confidence​​ratings,​​that​​divided​​a​​Gaussian​​distribution​​with​​mean​{​𝑐​
​1​
,..., ​𝑐​

​𝑘​−​1​
} ​𝑘​

​at​ ​the​​confidence​​predicted​​by​​the​​model​​and​​a​​standard​​deviation​​that​​was​​fitted​​to​​each​​subject​​(akin​
​as​ ​observational​ ​noise,​​Nunez​​et​​al.,​​2024).​​The​​probability​​of​​a​​specific​​level​​of​​confidence​​is​​then​​the​
​area​ ​under​ ​this​ ​Gaussian​ ​that​ ​is​ ​restricted​ ​by​ ​corresponding​ ​confidence​ ​criteria.​ ​Boldt​ ​et​ ​al.​ ​(2019)​
​confidence​​data​​was​​discretized​​from​​0​​to​​10​​to​​be​​able​​to​​apply​​this​​procedure.​​For​​Quandt​​et​​al.​​(2022)​
​data​​we​​applied​​a​​linear​​transformation​​for​​mapping​​models’​​confidence​​to​​participants’​​confidence.​​We​
​computed​ ​the​ ​likelihood​ ​of​ ​the​ ​parameters​ ​by​ ​determining​ ​the​ ​proportion​ ​of​ ​transformed​ ​confidence​
​predictions​ ​from​ ​the​ ​model​ ​that​ ​matched​ ​the​ ​reported​ ​confidence​ ​divided​ ​by​ ​the​ ​total​ ​number​ ​of​
​predictions​​(we​​used​​this​​approach​​to​​reduce​​the​​number​​of​​parameters​​as​​there​​were​​only​​30​​trials​​per​
​subject).​

​We​ ​compared​ ​all​ ​models​ ​using​ ​Bayesian​ ​model​ ​selection​ ​at​ ​the​ ​group​ ​level​ ​(Stephan​ ​et​ ​al.,​ ​2009).​
​Specifically,​ ​we​ ​computed​ ​Bayesian​ ​Information​ ​Criterion​ ​weights​ ​(Wagenmakers​ ​&​ ​Farrell,​ ​2004)​ ​for​
​each​​subject​​and​​for​​each​​model​​as​​a​​proxy​​for​​model​​evidence​​(i.e.,​​the​​belief​​that​​model​ ​generated​​𝑚​
​data​ ​from​ ​subject​ ​)​ ​and​ ​then​ ​used​ ​the​ ​bmsR​ ​R​ ​package​ ​to​ ​compute​ ​exceedance​ ​and​ ​protected​​𝑖​
​exceedance​ ​probabilities​ ​(the​ ​probabilities​ ​that​ ​participants​ ​were​ ​more​ ​likely​ ​to​ ​use​ ​a​​certain​​model​​to​
​generate​ ​behavior​ ​rather​ ​than​ ​any​ ​other​ ​alternative​ ​model)​ ​which​ ​were​ ​used​ ​as​ ​the​ ​metric​ ​for​ ​model​
​comparison. We report in the Supplementary material parameter and model recovery results.​



​Statistical analyses​

​We​ ​also​ ​carried​ ​out​ ​several​ ​model​ ​free​ ​statistical​ ​tests.​ ​We​ ​used​ ​one-sample​ ​t-tests​ ​against​ ​zero​
​(two-sided)​ ​for​ ​testing​​whether​​the​​b1​​parameter​​was​​greater​​than​​zero​​in​​the​​three​​datasets​​employed​
​(Figure​​3b).​​For​​each​​subject​​we​​run​​ordinal​​regressions​​predicting​​decision​​confidence​​on​​each​​trial​​with​
​the​ ​two​ ​model-derived​ ​variables:​ ​the​ ​probability​ ​of​ ​being​ ​correct​ ​and​ ​the​ ​precision​ ​of​ ​the​ ​decision​
​variable.​​Each​​of​​these​​two​​terms​​were​​therefore​​associated​​with​​two​​beta​​values,​ ​for​​the​​first​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

​term​ ​and​ ​for​ ​the​ ​second​ ​term,​ ​which​ ​allowed​ ​us​ ​to​ ​characterize​ ​individual​ ​differences​ ​in​β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

​confidence​​reporting​​(Figure​​5a).​​We​​then​​used​​these​​beta​​values​​(as​​well​​as​​their​​interaction)​​to​​predict​
​task​ ​performance​ ​(the​ ​proportion​ ​of​ ​correct​ ​choices),​ ​the​ ​parameter​​and​​the​​metacognitive​​ability​​of​​𝑏​

​1​

​each participant using the following linear regression models (Figure 5b, 5c, 5d):​

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)​ ​​~​​ ​β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

+ β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

+ β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

* β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

​𝑏​
​1​
​ ​​~​​ ​β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
+ β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​
+ β

​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)
* β

​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

​𝑚𝑒𝑡𝑎𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛​​ ​​~​​ ​β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

+ β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

+ β
​𝑝​(​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​)

* β
​𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛​

​Metacognition​​was​​measured​​using​​a​​logistic​​regression​​per​​subject​​predicting​​a​​correct​​(1)​​or​​incorrect​
​(0) response using the confidence level reported by the participant on each trial:​

​𝑃​(​𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒​ = ​𝑐𝑜𝑟𝑟𝑒𝑐𝑡​) = ​𝑒​​𝑥​

​1​​ ​+​ ​​𝑒​​𝑥​

​Where​ ​.​​𝑥​ = β
​0​

+ β
​1​

* ​𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒​
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