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Abstract 40 

A major challenge in cognitive neuroscience is developing reliable diagnostic tools for 41 

Disorders of Consciousness (DoC). Detecting dynamic brain connectivity configurations 42 

holds great promise for advancing diagnostics. Evidence indicates that certain fMRI-43 

derived connectivity patterns are closely tied to the level of consciousness. However, their 44 

clinical utility remains constrained by practical limitations. In this study, we introduce EEG-45 

based brain states as a real-time, bedside tool for detecting periods of enhanced brain 46 

activity in DoC patients. We analyzed data from 237 patients with chronic and acute DoC 47 

from three different centers and identified five EEG functional connectivity recurrent brain 48 

patterns. The occurrence probabilities of these patterns were strongly correlated with 49 

patients' levels of consciousness. High-entropy patterns were found exclusively in healthy 50 

participants, while low-entropy patterns became more prevalent with increasing DoC 51 

severity, crucially predicting individual recovery outcomes. To assess the real-time 52 

applicability of this approach, we conducted tests demonstrating reliable, real-time 53 

estimation of patient brain patterns, confirming the feasibility of bedside detection. Our 54 

findings highlight the potential of EEG for real-time, bedside monitoring of brain dynamical 55 

connectivity patterns, significantly deepening our understanding of the neural dynamics 56 

underlying consciousness and paving the way for future discoveries in brain state 57 

research. 58 
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 67 

Introduction 68 

Diagnosing disorders of consciousness (DoC) and prognosing patients’ evolution remain 69 

a major medical challenge. Current classifications of DoC are based primarily on clinical 70 

evaluations of arousal and awareness, leading to the categorization of patients into a 71 

heterogeneous set of categories with definitions that are still evolving 1,2. However, these 72 

assessments, which rely on overt behavioral responses, are inherently limited and are 73 

susceptible to bias from factors affecting motor output (e.g. locked-in syndrome)3,4 or 74 

language function (e.g. aphasia)5,6. As a result, diagnostic errors are common, with 75 

misdiagnosis rates estimated as high as 40%7, often leading to critical treatment decisions.  76 

Given these limitations, there is a growing need for objective, neurophysiological markers 77 

that can provide a more accurate assessment of consciousness. One promising avenue 78 

of research lies in the study of brain signal complexity and information dynamics. In this 79 

context, entropy, a measure of the unpredictability or disorder within a system, has 80 

emerged as a powerful tool to characterize different states of consciousness, with 81 

theoretical and practical implications. Studies in neuroscience have extensively explored 82 

the relationship between entropy and consciousness, particularly in the contexts of coma, 83 

anesthesia, and sleep8–10. Higher entropy has been associated with wakefulness and 84 

cognitive flexibility, whereas lower entropy reflects diminished neural complexity, often 85 

observed in unconscious states11,12. Recent findings indicate that brain entropy 86 

systematically decreases in coma, anesthesia, and deep sleep, reflecting a shift toward 87 

more predictable and less integrated neural states8,13. This pattern is consistent with the 88 

loss of long-range functional connectivity and thalamocortical disruptions observed in 89 

unconscious states14. A set of studies have proposed that consciousness emerges from 90 

the brain's dynamic organization, following the MaxCon (Maximization of Configurations) 91 

principle15–17. This framework suggests that conscious states arise when the brain 92 

optimally balances integration and segregation of information, maximizing network 93 

complexity. By analyzing entropy and brain connectivity across different states (e.g., 94 

anesthesia, coma, wakefulness), the authors provide evidence that consciousness 95 

corresponds to maximal configurational diversity and information distribution. 96 

https://www.zotero.org/google-docs/?EOkVkn
https://www.zotero.org/google-docs/?X4txLa
https://www.zotero.org/google-docs/?Ryphli
https://www.zotero.org/google-docs/?8y1AJO
https://www.zotero.org/google-docs/?ayw8ES
https://www.zotero.org/google-docs/?f4V0tx
https://www.zotero.org/google-docs/?0RHClq
https://www.zotero.org/google-docs/?7daQ6N
https://www.zotero.org/google-docs/?2JrMLl
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However, entropy-based approaches alone may not fully capture the complexity of 97 

conscious states. Sanz Perl et al.18 demonstrated that macroscopic brain activity deviates 98 

from equilibrium during wakefulness, a property that is lost in unconscious states. Using 99 

entropy production and the curl of probability flux in phase space, they showed that 100 

wakefulness is characterized by persistent non-equilibrium dynamics, whereas 101 

unconscious states, including those induced by propofol and ketamine anesthesia, shift 102 

toward equilibrium conditions. In active states such as wakefulness, the number of 103 

possible system configurations, representing the different ways in which brain regions can 104 

connect, is maximized. From the standpoint of statistical physics, this corresponds to a 105 

tendency to maximize entropy. In contrast, altered states such as sleep19, anaesthesia20, 106 

or DoC21 show a reduction in the number of possible configurations, leading to lower 107 

entropy16. This perspective aligns with the idea that a rich repertoire of network 108 

configurations, rather than just a high level of entropy, is essential for conscious 109 

experience. Beyond traditional measures of neural complexity, recent work has framed 110 

consciousness as a non-equilibrium phenomenon, highlighting the brain’s deviation from 111 

thermodynamic equilibrium as a fundamental signature of awareness18. Various theories 112 

of consciousness have incorporated entropy as a fundamental principle to explain 113 

conscious states and their fluctuations. In general, these theories suggest that 114 

consciousness emerges from neural dynamics that balance order and disorder, where 115 

entropy reflects the brain's ability to process information flexibly and adaptively. From a 116 

thermodynamic perspective, the theory of the brain as a non-equilibrium system posits 117 

that consciousness arises when the brain operates far from thermodynamic equilibrium, 118 

maintaining a stable yet highly variable dynamic18,22. According to this view, unconscious 119 

states reflect a reduction in neural complexity and a shift toward more predictable, 120 

equilibrium-like dynamics. Signal entropy has been widely studied as a correlate of 121 

consciousness, with measures derived from EEG time-series (e.g., spectral entropy, 122 

Lempel-Ziv complexity) consistently showing reduced complexity in unconscious states. 123 

However, these approaches primarily capture local neural signal variability rather than 124 

large-scale network coordination. In contrast, connectivity entropy quantifies the diversity 125 

of functional interactions across brain regions, offering a complementary perspective on 126 

the neural dynamics of consciousness. Together, these theories suggest that 127 

consciousness is deeply linked to the regulation of entropy in the brain. While conscious 128 

states are characterized by high but structured entropy, unconscious states reflect a 129 

https://www.zotero.org/google-docs/?zLyWUz
https://www.zotero.org/google-docs/?NTY7Pn
https://www.zotero.org/google-docs/?pVpBV5
https://www.zotero.org/google-docs/?CtckTa
https://www.zotero.org/google-docs/?R19sRg
https://www.zotero.org/google-docs/?vmYgTC
https://www.zotero.org/google-docs/?eqjttZ
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decline in complexity and a shift toward equilibrium-like dynamics. Understanding how 130 

entropy interacts with other neural properties remains a key challenge in consciousness 131 

research. 132 

 133 

Recent advancements in neuroimaging, guided by the aforementioned findings on entropy 134 

and complexity, as well as connectionist theories of consciousness8,23–26, have sought to 135 

characterize conscious states by identifying brain activity patterns that may not be 136 

detectable through behavioral assessments. These techniques have emerged using 137 

active cognitive tasks21,27–29, spontaneous brain activity9,30–32, and external stimulation 138 

paired with EEG responses33–35, providing clinicians with new tools to detect 139 

consciousness. Among these methods, one of the most promising approaches is based 140 

on studying signatures of consciousness through the detection of fMRI-based “brain 141 

states''13,36–39, which is especially well suited to detect spontaneous, transient shifts in 142 

brain activity. These brain states refer to recurring patterns of functional connectivity 143 

obtained through unsupervised clustering of dynamical connectivity matrices that can 144 

reveal these shifts (typically lasting from 5 to 60 seconds36). Research indicates that the 145 

properties of the brain states are strongly modulated by levels of arousal and 146 

consciousness. In awake humans and monkeys a diverse range of brain states exists, 147 

including those with high connectivity, high entropy, and negative correlations13,36,38,39. 148 

Conversely, in cases of DoC or under sedation, there are significant changes in the 149 

observed brain states: the richer variety of brain states diminishes, and only low-150 

connectivity, low-entropy states ―shaped by the underlying structural connectivity― 151 

persist9,37. These findings are in line with dynamical systems simulations40,41 showing that, 152 

for low coupling strength between brain areas —a configuration resembling DOC 153 

condition—spontaneous neuronal activity remains but it is restricted to a single stable 154 

connectivity pattern, defined by the fixed network of structural connectivity. As connectivity 155 

between brain regions increases, the system undergoes a transition to multistability, 156 

allowing for a diverse set of possible patterns. This transition is considered crucial for 157 

sustaining conscious states. 158 

However, the reliance on fMRI for detecting brain states presents significant practical 159 

challenges in the clinical management of DoC. Transporting patients with life-supporting 160 

devices to MRI scanners is often unfeasible, and repeated scanning over long periods is 161 

required to capture the transient periods of heightened brain activity, which is impractical 162 

https://www.zotero.org/google-docs/?qP5Zc0
https://www.zotero.org/google-docs/?abYVfC
https://www.zotero.org/google-docs/?5MkG9I
https://www.zotero.org/google-docs/?6fWssK
https://www.zotero.org/google-docs/?qzMFt7
https://www.zotero.org/google-docs/?gBe02j
https://www.zotero.org/google-docs/?x1VXCT
https://www.zotero.org/google-docs/?73hlgH
https://www.zotero.org/google-docs/?CYTUXS
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in a scanner setting. In contrast, EEG offers a more accessible and real-time alternative, 163 

allowing bedside assessments that could provide critical insights into patients' residual 164 

brain function and consciousness. By leveraging EEG-based brain state detection, we can 165 

move toward more personalized patient care, allowing clinicians to monitor transient 166 

changes in brain dynamics. 167 

In this study, we analyzed one of the largest cohorts of DoC patients to date, comprising 168 

237 patients and 101 healthy controls from three independent clinical centers, aiming to 169 

bring EEG-based consciousness detection closer to clinical application. We expanded 170 

upon previous work that focused mainly on chronic DoC, such as Unresponsive 171 

Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS), by including both 172 

chronic and acute patients. The acute group included comatose individuals with low 173 

Glasgow Coma Scale (GCS) scores, with an average of 14 days since brain injury. Our 174 

goal was to identify EEG-based brain states and explore their diagnostic and prognostic 175 

potential across the full spectrum of DoC. (Fig. 1A). Our findings revealed and 176 

characterized five distinct EEG functional connectivity brain states, whose occurrence 177 

probability was closely associated with the level of consciousness. High-entropy brain 178 

states were predominantly observed in conscious subjects, while low-entropy states 179 

became more probable with increasing DoC severity. Moreover, we found that transient 180 

patterns of high-entropy connectivity — akin to those seen in healthy individuals — could 181 

occasionally be detected in DoC patients. The occurrence probability of these patterns 182 

provided valuable diagnostic information and offered predictive insights into patient 183 

outcomes. Finally, we demonstrated that these transient states of enhanced connectivity 184 

could be detected in real-time using bedside EEG, highlighting the feasibility of this 185 

method for continuous patient monitoring and neuroprognostication (Fig. 1). 186 

Results 187 

Methodological overview 188 

The analyses applied in this work are illustrated in Fig. 1. EEG data from three distinct 189 

sites were first transformed into symbolic representations using weighted Symbolic Mutual 190 

Information (wSMI)21 (see Supplementary Methods and Fig. S1 for a full description of the 191 

process). This measure identifies non-random joint fluctuations between two EEG signals, 192 

allowing for the detection of meaningful patterns in brain connectivity. Next, k-means 193 

clustering was employed on these wSMI connectivity matrices to identify recurring 194 

connectivity patterns across all subjects, referred to as “brain states”13,37,38 (Fig. 1A). These 195 

https://www.zotero.org/google-docs/?FHSpzB
https://www.zotero.org/google-docs/?o1IpHs
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brain states were then sorted based on the Shannon entropy of the distribution of 196 

connectivity values. Each brain state was classified by its proximity to the connectivity 197 

matrices, resulting in a probability distribution for each subject (Fig. 1A, right). To 198 

summarize the properties of these brain states, we calculated the Weighted Entropy (WE), 199 

which represents the average entropy weighted by the probabilities. The WE metric 200 

reflects the diversity and complexity of connectivity patterns across brain states, with 201 

higher WE values indicating more varied and complex connectivity. To investigate the 202 

relationship between these brain states and clinical outcomes, patients were categorized 203 

into three groups based on their clinical evolution: improvement (e.g., transition from UWS 204 

to MCS), no change (e.g., staying in the same condition), and deterioration (e.g., transition 205 

from MCS to UWS). 206 

Detection of EEG brain states 207 

We identified five distinct EEG brain states, with the value of five determined using the 208 

Elbow method42 (Fig. S2; see Supplementary Material for details), each characterized by 209 

unique connectivity patterns. To streamline analysis and comparison, we ranked the brain 210 

states by entropy levels (Fig. 2A), assigning numbers in descending order. Consistent with 211 

previous findings in fMRI studies, brain states 1 and 2 displayed the highest entropy and 212 

complexity (Fig. 2D). These states displayed a broad spectrum of connectivity values, 213 

ranging from weak to strong connections across electrodes in a topographical map, 214 

suggesting the presence of connectivity hubs in parietal regions (Fig. 2A). On the opposite 215 

end of the entropy scale, brain states 4 and 5 exhibited a completely different connectivity 216 

pattern. These states showed a narrow connectivity range with uniformly low connectivity 217 

values, leading to a homogeneous distribution of connections across the scalp (Fig. 2A, 218 

right). Using hierarchical decomposition analysis of the brain state space, we observed 219 

similarities according to the Manhattan distance and positions between the different brain 220 

states (Fig. 2C). Brain states 4 and 5 formed a cluster with the highest similarity, followed 221 

by their merging with brain states 3 and 2 (Fig. 2C). Brain state 1 exhibited the greatest 222 

distance from the other brain states, indicating its distinctiveness in the multidimensional 223 

space. 224 

EEG brain states rates of occurrence across levels of consciousness 225 

Figure 2B depicts the distribution of brain states across different groups based on the 226 

severity of DoC. Both the probability of each brain state (Fig. 2B) and the average WE 227 

(Fig. 2E) were consistently modulated by the participant's condition. Compared to controls, 228 

https://www.zotero.org/google-docs/?8hizcQ
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the patients’ probability of high-entropy brain states diminished (Fig. 2B), the probability 229 

of low-entropy states increased, and the average weighted entropy decreased (Fig. 2E). 230 

As DoC severity increased from MCS to UWS to Acute, the WE progressively shifted 231 

towards lower values in patients compared to controls (Fig. 2E) (F3, 153.1 = 25.45, p = 232 

2×10⁻¹³). Significant differences in WE were observed between the control group and all 233 

patient groups (Healthy vs. MCS [(-0.01141 ± 0.00254), t-ratio(294.8) = -4.497, p = 234 

0.0001], Healthy vs. UWS [(-0.01521 ± 0.00250), t-ratio(294.9) = -6.081, p < 0.0001], 235 

Healthy vs. Acute [(-0.02627 ± 0.00440), t-ratio(82.1) = -5.967, p < 0.0001]). However, 236 

within the patient group, significant differences in WE were found only between MCS and 237 

Acute ([(-0.01486 ± 0.00515), t-ratio(54.1) = -2.883, p = 0.028]). 238 

To ensure the robustness of our findings, we conducted separate analyses for each 239 

center, confirming that the observed patterns held across all datasets (Fig. S3A and 240 

Supplementary Methods). To further validate our results, we performed a cross-validation 241 

approach, using centroids calculated in one center and testing them in another, which 242 

confirmed the generalizability of our findings (Fig. S3 B, C). Additionally, these findings 243 

remained stable even when reducing the number of EEG channels, as analyses with 64 244 

and 32 channels yielded similar results to those obtained with 128 channels (Fig. S4). This 245 

consistency across datasets, channel configurations, and validation methods strengthens 246 

the reliability of our results. 247 

Patient-Specific EEG Brain States 248 

To refine our analysis, we re-ran the clustering algorithm, this time excluding data from 249 

healthy controls. This approach allowed us to focus exclusively on the portion of the 250 

multidimensional space occupied by the patient's data, enabling a more detailed 251 

characterization of their EEG brain specific to the patients. To differentiate these newly 252 

identified states from those obtained in the full dataset, we refer to them as Patient-Specific 253 

Brain States (PBS), labeled as PBS1, PBS2, and so on. For this analysis, we combined 254 

data from the Paris and Shanghai datasets while excluding the Toulouse dataset to avoid 255 

collinearity issues, as the Toulouse dataset contained only acute patients. By restricting 256 

the analysis to the Paris and Shanghai datasets, we were able to perform a mixed model 257 

analysis on chronic patients and evaluate the method's potential for both prognosis and 258 

diagnosis.  259 
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As expected, the newly identified brain states exhibited significantly lower wSMI values 260 

and more diffuse topographies (Fig. 3A) and lower levels of LZ complexity and entropy 261 

(Fig. 3C). Consistent with our previous findings, the probability of each individual brain 262 

state (Fig. 3B), and WE (Fig. 3D) varied across patient groups, indicating that as the 263 

severity of DoC increased from MCS to UWS, WE progressively shifted towards lower 264 

values (Fig. 3D) (F3, 183.82 = 18.7, p = 1.2×10⁻¹⁰). Using centroids obtained exclusively from 265 

patient data, we observed significant differences between MCS and UWS (95% CI 266 

[0.00344, 0.00728], t-ratio(332.1) = 2.793, p = 0.0282). 267 

Prognostic Value of EEG Brain States 268 

Next, we investigated the potential of our methodology in predicting patient prognosis. In 269 

chronic patients, we found a significant relationship between patient outcomes and WE 270 

(F2, 178.6 = 4.808, p = 0.009; Fig. 4A and Fig. S5). Specifically, patients who showed 271 

improvement in their condition (i.e., transitioning from UWS to MCS) had higher WE 272 

(including patients who transitioned from MCS to MCS+ in the improvement group did not 273 

change the results; however, we excluded them from the analysis as they represented 274 

only three cases), while those who experienced deterioration (transitioning from MCS to 275 

UWS or dying) had lower WE. Pairwise comparisons adjusted for multiple comparisons 276 

revealed significant differences between the Deteriorate and Improve groups (95% CI 277 

[0.000759, 0.00740] p = 0.0115). However, no significant differences were observed 278 

between the Deteriorate and No change groups (95% CI [-0.00245, 0.00448], p = 0.77) or 279 

the No change and Improve groups (95% CI [-0.000156, 0.00628], p = 0.065).  280 

Similarly, in acute patients we found a significant relationship between patient outcomes 281 

and WE (F2, 38 = 5.947, p = 0.00566; Fig. 4B). Significant differences were observed 282 

between the No change group (patients transitioning to UWS) and the Deceased group 283 

(0.0521, 95% CI [0.0085, 0.0958], p = 0.016), as well as between the Improve group 284 

(patients transitioning to MCS) and the Deceased group (0.0522, 95% CI [0.0121, 0.0922], 285 

p = 0.008). However, no significant differences were found between the Improve and No 286 

change groups (5×10⁻⁵, 95% CI [-0.039, 0.039], p = 0.99). 287 

Towards Real-Time EEG Monitoring of Patients 288 

To assess the practical potential of this methodology, its performance was tested in a 289 

simulated real-time bedside setting. Although real-time data were not available, we 290 
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conducted a simulation of real-time assessment on acute patients using our pipeline (see 291 

Supplementary Methods for a detailed explanation of the procedure). We classified 292 

segments of raw EEG signals into one of the five brain states previously defined for the 293 

patients (Fig. 1B). We compared the similarity between offline and real-time brain state 294 

distributions in patients, along with their corresponding WE values. Statistical analysis 295 

revealed no significant differences in WE values between the two conditions (F1, 78 = 0.713, 296 

p = 0.401), indicating that the real-time classification effectively replicated the distribution 297 

observed in the offline analysis (Fig. 5A). Figure S5B displays the high degree of similarity 298 

between offline and real-time classifications. The average WE values for each patient 299 

remained highly stable between the two conditions (R = 0.98) (Fig. 5B), suggesting that 300 

our methodology can reliably capture patient-specific brain states in a real-time context. 301 

We also quantified the similarity between real-time and offline distributions using a 302 

bootstrap method (see Supplementary Methods for details). To assess this similarity, we 303 

computed the Jensen-Shannon divergence between the distributions (Fig. 5C). The 304 

results showed that the divergence between real-time and offline distributions was not 305 

significantly different from random fluctuations when classifying real-time data based on 306 

the offline brain states of the same acute patients (p = 0.47).  307 

We further explored the potential of our simulated real-time method by assessing its ability 308 

to predict prognosis, as we previously did in the offline analysis. In acute patients, we 309 

found that real-time mean values, obtained from a single real-time recording, could 310 

distinguish between patients who improved and those who deteriorated just as effectively 311 

as the offline analysis (F2, 38 = 7.47, p = 0.001). We found significant differences in No 312 

change vs. Deteriorate (0.05, 95% CI [0.01, 0.09], p = 0.004) and Improve vs. Deteriorate 313 

(0.05, 95% CI [0.01, 0.08], p = 0.003) but no significant difference between in No change 314 

vs. Improve (-0.002, CI [-0.03, 0.03], p = 0.97). Next, we used the probability values of 315 

each brain state as features to train a Logistic Regression classifier to differentiate 316 

between the control and acute groups. The model, evaluated using a leave-one-out cross-317 

validation approach, achieved an AUC of 0.80, an accuracy of 0.76, and an F1-score of 318 

0.81. These results demonstrate that the real-time classification framework effectively 319 

captures meaningful differences between conditions, highlighting its potential for practical 320 

application. 321 

Discussion 322 
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In this study, we investigated EEG brain states in healthy individuals and patients with 323 

DoC, identifying distinct brain states and demonstrating their relevance to patient 324 

categories and recovery probabilities. We also established the feasibility of real-time, 325 

bedside brain state detection, offering a reliable estimation of the patient's current brain 326 

state. 327 

EEG Brain States and Their Link to Consciousness 328 

Our findings align with previous research on functional connectivity in DoC patients, as 329 

the EEG brain states we identified reflect topographical patterns consistent with those 330 

seen in prior research on wakefulness and DoC states13,36,37. Specifically, brain states 1 331 

and 2 exhibit striking similarities with the topographies from healthy individuals in time-332 

averaged wSMI estimations28,29. These topographies indicate a temporal organization 333 

characterized by long-range coupling between brain regions, resulting in distinct functional 334 

connectivity patterns. Notably, these patterns encompass both low and high magnitude 335 

wSMI values and feature a prominent connectivity hub located at bilateral parietal cortices. 336 

Conversely, brain states 4 and 5  resemble those observed in fMRI studies conducted on 337 

anesthetized monkeys39,43 and DoC patients13 using both EEG and fMRI modalities. These 338 

patterns are featured by highly distributed and homogeneous low connectivity with 339 

diminished or very weak correlation or mutual information. 340 

These results reinforce theories of consciousness emphasizing long-distance connectivity 341 

and dynamic interaction between brain regions as critical for the emergence and 342 

maintenance of conscious states24,26. According to current models of consciousness, rich 343 

and dynamic functional interactions, along with a diverse repertoire of connectivity 344 

patterns, are considered key aspects of conscious processing. These dynamics rely on a 345 

certain level of coupling between brain regions, enabling the integration of segregated 346 

neural processes and supporting potential conscious awareness34,44,45. Conversely, in 347 

conditions such as anesthesia, DoC, or non-rapid eye movement (NREM) sleep, brain 348 

regions exhibit decreased coupling and functional connectivity converges into a low 349 

connectivity pattern that aligns with the underlying anatomical connections. This state is 350 

characterized by spatially homogeneous and weak connectivity, with limited segregation 351 

or integration of neural activity. It represents a stable and long-lasting brain state 352 

associated with reduced conscious awareness38,43. 353 

The Role of Entropy in Brain State Classification 354 

https://www.zotero.org/google-docs/?tIPpuV
https://www.zotero.org/google-docs/?41cOoL
https://www.zotero.org/google-docs/?xlTJDG
https://www.zotero.org/google-docs/?2UTGFf
https://www.zotero.org/google-docs/?EftEp1
https://www.zotero.org/google-docs/?pCNZFo
https://www.zotero.org/google-docs/?JOtcDX
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An essential consideration in entropy-based assessments of consciousness, such as our 355 

approach, is that variability in connectivity, rather than the absolute strength of 356 

connections, is the primary factor driving changes in entropy. Our analysis comparing 357 

connectivity entropy with local signal entropy revealed that while both measures decrease 358 

in unconscious states, local signal entropy showed limited classification power in our 359 

dataset (Fig. S6), suggesting that large-scale functional network diversity is a stronger 360 

marker of consciousness than local neural complexity alone. This distinction is crucial 361 

when analyzing brain states such as epilepsy and coma. In epilepsy, for instance, neural 362 

connections are abnormally strong and highly synchronized, yet this excessive rigidity 363 

results in low entropy due to a lack of flexible state transitions. A similar pattern is observed 364 

in coma, where patients predominantly remain in state 5, a highly stable neural 365 

configuration with minimal variation over time. Despite having wSMI values that may 366 

appear comparable to wakefulness in absolute terms, the key difference lies in the lack of 367 

fluctuation in these values. This reflects the brain’s failure to dynamically adapt and 368 

process both internal and external information. Thus, entropy-based approaches should 369 

not only consider connection strength but also the capacity of the system to transition 370 

between different states, as this flexibility is likely a crucial feature of conscious 371 

processing. Another crucial aspect to consider is the role of connection variability in 372 

entropy, rather than just the strength of connectivity. Studies using wSMI and similar 373 

metrics indicate that high entropy is associated with dynamic, flexible neural connections, 374 

not necessarily stronger connections9. In conditions such as epilepsy, brain activity is 375 

highly synchronized, with strong but rigid connections, leading to a low entropy state 376 

despite intense neural activity. This suggests that entropy-based measures should 377 

account for connection variability rather than absolute connectivity strength when 378 

assessing consciousness. While WE is not a direct measure of complexity, it provides 379 

insights into the variability of brain state organization, reflecting both the range of 380 

connectivity values and the temporal changes in these patterns. This aligns with previous 381 

studies that have used temporal dynamics to understand functional connectivity in the 382 

brain8,46. 383 

Clinical Applications and Real-Time Monitoring 384 

Using EEG brain states, we successfully differentiated healthy participants from patients 385 

and discriminated between DoC categories. Moreover, we have shown that applicability 386 

of our methods is not reliant on high-density EEG systems. While our approach does not 387 

https://www.zotero.org/google-docs/?31TOGY
https://www.zotero.org/google-docs/?I91NWr
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achieve exceptional classification scores compared to recent multimodal approaches that 388 

combine multiple metrics, it offers unique advantages. One advantage of our approach is 389 

the ability to detect specific windows of enhanced brain activity in real time. This could 390 

improve the classification performance of multivariate models that currently do not account 391 

for individual fluctuations over time. By combining current EEG classification methods with 392 

the identification of these transient brain states, we may develop a powerful tool for the 393 

diagnosis and prognosis of patients. Moreover, these tools could foster more productive 394 

interactions between healthcare providers and patients by focusing on moments when the 395 

patient exhibits brain states 1 and 2. Furthermore, our findings suggest that even the 396 

presence of complex brain states can offer valuable insights into the DoC category and 397 

patient outcomes. The real-time detection of EEG brain states presents a novel 398 

opportunity for bedside diagnosis and intervention. Although richer brain states are rare in 399 

DoC patients, traces of these states can still be identified across all DoC categories. This 400 

suggests that patients' brains briefly visit richer connectivity patterns. Detecting these 401 

transiently rich brain states could potentially be valuable for identifying windows of 402 

momentarily enhanced cognition in patients, which can inform optimal communication and 403 

intervention strategies. Interventions during these brief states of altered brain dynamics 404 

may lead to sustained exploration of the brain state repertoire and possibly associated 405 

behavioral changes. Similar approaches, such as deep brain stimulation, have shown 406 

promising results in modulating fMRI brain states in anesthetized monkeys39, suggesting 407 

its potential applicability in DoC patients to drive the brain state towards cognitively rich 408 

configurations. 409 

Limitations and Open Questions  410 

We were able to discriminate between different DoC subcategories only after excluding 411 

healthy controls from the analysis, due to the variability introduced by healthy individuals. 412 

The use of k-means clustering posed limitations, as it partitions data into equally sized 413 

clusters, impacting the granularity of our findings. Future research should explore more 414 

advanced clustering methods that can adjust cluster sizes dynamically to improve 415 

discrimination between patient subcategories. 416 

A significant methodological challenge in using EEG to study brain states is the lack of 417 

direct information on specific brain regions, unlike fMRI. EEG signals cannot directly map 418 

functional to structural connectivity, although structural connectivity plays a crucial role in 419 

https://www.zotero.org/google-docs/?eeGXW4
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shaping brain states, especially under low vigilance. Our approach addressed this by 420 

classifying brain states based on entropy. This allowed us to capture the dynamics of brain 421 

states without needing direct structural data. Notably, our entropy-based sorting closely 422 

mirrored the anatomical organization observed in fMRI studies, suggesting that EEG could 423 

offer a reliable means of characterizing brain state dynamics. Future work should explore 424 

how to model these results without relying on structural matrices, potentially developing 425 

EEG-based models grounded in functional connectivity backbones. 426 

A key limitation of this study, and of research on brain states in general, is the uncertainty 427 

regarding their relationship to subjective experience. Neither our study nor previous works 428 

have systematically examined whether the same brain state corresponds to similar 429 

cognitive or perceptual experiences. While high-entropy states are predominantly 430 

observed in conscious individuals, their occasional presence in DoC patients does not 431 

necessarily imply awareness. Likewise, the frequent occurrence of low-entropy states in 432 

healthy controls does not indicate unconsciousness during those periods. Understanding 433 

the functional significance of these brain states requires further investigation into their 434 

cognitive content, ideally incorporating experience sampling alongside neurophysiological 435 

monitoring. 436 

A particularly intriguing finding is the persistence of low entropy brain states such as 437 

number 5 in healthy controls, which aligns with previous fMRI studies but remains poorly 438 

understood. This state could reflect transient microsleep episodes, a common but often 439 

overlooked phenomenon in resting-state paradigms. Alternatively, it may not indicate a 440 

loss of consciousness but rather effortful information processing, occurring between 441 

cognitively demanding tasks while subjects remain vigilant. Without direct experience 442 

sampling, it is unclear whether this state corresponds to altered awareness. Future 443 

research should aim to distinguish between these possibilities by combining EEG-based 444 

connectivity analysis with subjective reports and objective wakefulness measures such as 445 

eye-tracking or polysomnography.  446 

More broadly, the classification of brain states is constrained by the assumption that they 447 

represent discrete functional configurations with distinct cognitive correlates. One key 448 

limitation is the lack of direct association between these states and specific mental 449 

content. Neither our study nor previous works have systematically investigated whether 450 

the same brain state corresponds to similar subjective experiences, leaving open the 451 
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possibility that distinct cognitive or perceptual states could map onto the same connectivity 452 

configuration. Additionally, k-means clustering assumes that the identified states are 453 

equally distributed and well-separated in the feature space. However, the robustness of 454 

our clustering analysis regarding the number of brain states to identify (Fig. S2), and the 455 

stability of brain states across resting-state and task conditions (Table S2), highlight both 456 

strengths and challenges in defining brain states. On one hand, the consistency of results 457 

across different clustering solutions and experimental conditions suggests that these 458 

findings are not an artifact of arbitrary parameters. On the other hand, this same 459 

robustness raises fundamental questions about what constitutes a "brain state"—if states 460 

remain unchanged across cognitive conditions, does this imply they are purely structural 461 

in nature, or do they reflect intrinsic, flexible neural dynamics that transcend task 462 

engagement? To advance our understanding of this topic, future research should integrate 463 

experience sampling methods with neuroimaging clustering approaches. This combined 464 

strategy would allow us to assess whether fluctuations in brain connectivity correspond to 465 

variations in conscious experience, shedding light on the functional significance of these 466 

brain states and their role in shaping cognition and awareness.   467 

Our findings also align with in-silico theoretical models47,48. From a neural dynamics 468 

perspective, high-entropy states may reflect a system operating in a metastable regime, 469 

allowing for flexible transitions between functional connectivity configurations, a 470 

characteristic often associated with wakefulness and cognitive engagement45,49. In 471 

contrast, low-entropy states may indicate a system trapped in a more rigid, structurally 472 

constrained configuration, which is commonly observed in unconscious states such as 473 

deep sleep, anesthesia, and DoC. Notably, the presence of transient high-entropy states 474 

in DoC patients suggests that residual network flexibility is preserved to some extent, 475 

potentially reflecting brief windows of increased neural complexity that could be relevant 476 

for recovery45. The prevalence of low-entropy states in healthy controls further 477 

underscores that entropy alone is not a direct measure of consciousness but rather one 478 

aspect of a broader dynamical framework. Future research should explore how 479 

interventions targeting neural network dynamics, such as non-invasive brain stimulation 480 

or pharmacological modulation, might influence the stability and transition probabilities of 481 

these states, with potential implications for prognosis and therapeutic strategies in DoC. 482 

Conclusion 483 

https://www.zotero.org/google-docs/?PrQU57
https://www.zotero.org/google-docs/?lenCvr
https://www.zotero.org/google-docs/?NEW9ue
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This study highlights a strong relationship between EEG brain state properties and levels 484 

of consciousness. High-entropy brain states are predominantly observed in conscious 485 

individuals, while low-entropy states are more prevalent in patients with severe DoC. The 486 

occurrence probabilities of these brain states offer crucial insights into patient prognosis. 487 

Moreover, we have demonstrated that transient, enhanced connectivity states can be 488 

reliably detected in real-time, paving the way for novel diagnostic and therapeutic 489 

interventions in DoC patients. By leveraging EEG as a non-invasive, bedside tool, our 490 

research contributes to the growing field of digital medicine, enabling continuous, real-491 

time monitoring of brain function. This approach not only deepens our understanding of 492 

the neural mechanisms underlying consciousness but also holds the potential to 493 

revolutionize clinical workflows with advanced, data-driven diagnostic tools that could 494 

transform the care of DoC patients. 495 

Methods 496 

Ethics statement  497 

All data collections have been approved by their respective ethical committees. The 498 

Shanghai study was approved by the Ethical Committee of the Huashan Hospital of Fudan 499 

University (approval number: HIRB-2014-281). The Paris study was approved by the 500 

Ethical Committee of the Pitié Salpêtrière under the French label of ‘Recherche en soins 501 

courants’ [routine care research]. The Toulouse study was approved by the ethics 502 

committee of the University Hospital of Toulouse, Toulouse, France (approval number: 503 

RC 31/20/0441). All data collections and analyses were carried out in accordance with the 504 

Declaration of Helsinki. 505 

Participants, Recordings and Preprocessing 506 

EEG data were collected from a total of 237 patients and 101 control subjects across three 507 

independent datasets (Shanghai, Paris, and Toulouse), resulting in 267 patient recordings 508 

and 101 control recordings (see Table S1 for the demographic information). The Shanghai 509 

and Paris datasets included chronic patients diagnosed with Minimally Conscious State 510 

(MCS) or Unresponsive Wakefulness Syndrome (UWS), while the Toulouse dataset 511 

focused on acute patients (see Table S3 for a description of datasets). EEG signals were 512 

recorded using Electrical Geodesics systems with high-density electrode nets (HCGSN 513 

257-channel for Shanghai and 128-channel for Paris and Toulouse). Sampling rates 514 
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varied across datasets (1000 Hz in Shanghai, 250 Hz in Paris and Toulouse); therefore, 515 

the Shanghai data were downsampled to 250 Hz for consistency. Additionally, all datasets 516 

were band-pass filtered between 1–40 Hz to ensure spectral uniformity. To facilitate cross-517 

center comparisons, we interpolated the Shanghai and Paris datasets to match a common 518 

128-channel electrode configuration using spherical interpolation (see Supplementary 519 

Methods for details). Preprocessing pipelines followed standard artifact rejection 520 

procedures. Clinical assessments were performed using the Coma Recovery Scale-521 

Revised (CRS-R), and only EEG recordings from patients off sedation for at least 24 hours 522 

were included. 523 

Dynamic wSMI calculation 524 

wSMI was used to assess non-random joint fluctuations between EEG signals across 525 

electrode pairs. A detailed description of the procedure is provided in the Supplementary 526 

Methods. Briefly, EEG signals were transformed into symbolic representations using 527 

ordinal patterns with an embedding dimension of d = 3 (resulting in six possible symbols) 528 

and a temporal separation of τ = 8 ms, optimizing sensitivity to a broad frequency range. 529 

Mutual information was computed using a modified approach that accounts for symbol 530 

similarity, reducing spurious correlations from common EEG sources. A Current Source 531 

Density transformation (spherical spline surface Laplacian) was applied before computing 532 

wSMI. To capture temporal dynamics, EEG sessions were segmented into overlapping 533 

16-second windows with a 1-second shift, balancing sensitivity to brain state transitions 534 

while maintaining robust statistical estimation. Connectivity matrices (128×128) were 535 

derived for each window and subject. The number of windows varied across datasets due 536 

to differences in recording durations, ranging from approximately 8 minutes per subject in 537 

the Shanghai dataset to 31 minutes in the Toulouse dataset. All analyses were 538 

implemented in Python using NICE Tools, MNE, and scikit-learn 50. 539 

Unsupervised clustering of connectivity matrices 540 

We applied k-means clustering to identify recurring connectivity patterns, a method widely 541 

used in fMRI research 13,37. To optimize computational efficiency and ensure equal 542 

representation of all EEG recordings, we downsampled each subject’s data to 300 543 

windows, distributing selections evenly across the session to avoid temporal biases (see 544 

Supplementary Methods). For clustering, we used the Manhattan distance as the similarity 545 

metric and determined the optimal number of clusters (k = 5) using the Elbow method (Fig. 546 

https://www.zotero.org/google-docs/?G245dr
https://www.zotero.org/google-docs/?DNR79r


 

 

18 

S2). To account for the deterministic nature of k-means, we performed 10,000 replicates 547 

with randomized centroid initialization to prevent convergence to local minima. Once the 548 

centroids were established, all original connectivity matrices were assigned to the closest 549 

brain state based on Manhattan distance. Additionally, we computed topographical plots 550 

for each centroid by averaging column values across rows in the centroid matrices to 551 

obtain a single value per electrode. This analysis was conducted on two datasets: one 552 

including all participants (brain states 1–5) and another including only chronic patients 553 

(patient-specific brain states PBS1–PBS5), resulting in two distinct sets of brain states. 554 

Brain state complexity and distribution across DoC 555 

The brain states obtained by k-means clustering were sorted in descending order based 556 

on their entropy. To achieve this, we calculated the entropy of the distribution of wSMI 557 

values for each centroid by dividing the values into √𝑁 bins where N = 128*(128-1)/2 is 558 

the number of independent values of the matrix. Additionally, we calculated the Lempel-559 

Ziv complexity (LZC) for each centroid, which quantifies the irreducible information present 560 

in a sequence (see Supplementary material for details). The probability of occurrence for 561 

each brain state was estimated by determining the proportion of times each individual 562 

connectivity matrix was classified as belonging to that specific brain state. This probability 563 

was estimated based on all available recording windows, not just the 300 windows 564 

selected for clustering. 565 

To quantify the shift of brain state distributions towards specific brain states, we introduced 566 

a weighted entropy (WE) defined as follows: 567 

𝑊𝐸 =  ∑5
𝑖=1 𝑝𝑖𝐻𝑖 (1) 568 

Where 𝑝𝑖 is the probability of each brain state and 𝐻𝑖 is its entropy.  569 

Instead of relying solely on the probability distribution of k-means centroids, we calculated 570 

the entropy of each centroid's connectivity values, which reflects the variability within each 571 

pattern. This approach recognizes that even if different centroids have the same 572 

probability, their varying entropies will result in different combinations or averages, 573 

capturing the underlying complexity of brain states more accurately.  574 

Instead of relying solely on the probability distribution of k-means centroids, we calculated 575 

the entropy of each centroid's connectivity values, reflecting the variability within each 576 
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pattern. This approach accounts for the fact that some centroids represent more 577 

homogeneous and stable connectivity states (lower entropy), while others capture more 578 

heterogeneous or rich configurations (higher entropy). si consideramos solo la 579 

probabilidad de cada uno de ellos no tendriamos en cuenta esta mayor o menor entropia. 580 

Additionally, WE offers a more robust means of comparison across groups, as it ensures 581 

that differences in brain dynamics are not solely attributed to frequency shifts but also to 582 

changes in the underlying informational structure. 583 

 584 

Patients’ Outcome 585 

We conducted an analysis of the patients' evolution to examine how brain states might 586 

provide information regarding their prognosis. For chronic patients, we defined the 587 

potential outcomes as improvement in their clinical condition (e.g., UWS patients 588 

transitioning to MCS), deterioration (e.g., patients dying or transitioning from MCS to 589 

UWS), or no change in their clinical condition. Similarly, for acute patients, the outcomes 590 

were determined based on their progression from an acute condition to a chronic 591 

condition, including evolution to MCS, evolution to UWS, or death. A summary of the 592 

outcomes since recording can be found in Table S1. Patients for whom the outcome was 593 

unknown were denoted as "N/A", and their data were excluded from the prognosis 594 

analysis. 595 

Real-time simulation 596 

As a proof of concept, we conducted a real-time simulation to assess the feasibility of EEG 597 

brain state classification in acute patients. EEG segments were processed at regular 598 

intervals, and their functional connectivity patterns were compared to pre-defined offline 599 

brain states. We evaluated the consistency between real-time and offline classifications, 600 

confirming that the real-time approach reliably captured brain state distributions. These 601 

findings support the potential for bedside, real-time monitoring of brain states in disorders 602 

of consciousness. Full methodological details are provided in the Supplementary 603 

Materials. 604 
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Statistical analysis  605 

Group differences were assessed using mixed linear models to evaluate the relationship 606 

between WE and levels of consciousness across different patient groups. Specifically, WE 607 

was modeled as a function of group category (Healthy, MCS, UWS, and Acute), with 608 

dataset center (Shanghai, Paris, and Toulouse) included as a random effect. Multiple 609 

comparison corrections were applied to account for differences across conditions, 610 

ensuring statistical robustness. In addition, a separate ANOVA was conducted to assess 611 

differences within each dataset, followed by post-hoc Tukey HSD tests to determine 612 

pairwise significance. 613 

To examine the prognostic value of EEG brain states, we analyzed the relationship 614 

between WE and patient outcomes in both chronic and acute groups. For chronic patients, 615 

a mixed linear model was used to assess whether WE varied across patients who 616 

improved, remained stable, or deteriorated. For acute patients, where data were available 617 

only from a single center, we performed an ANOVA to compare outcome groups. These 618 

analyses allowed us to determine whether specific EEG connectivity patterns were 619 

predictive of recovery trajectories in disorders of consciousness. 620 

To validate the real-time classification approach, we compared real-time and offline brain 621 

state distributions using a bootstrap method and Jensen-Shannon distance analysis. This 622 

approach quantified the divergence between the two classification methods, ensuring that 623 

real-time EEG monitoring reliably captured the same brain state probabilities as offline 624 

analyses. We repeated this comparison across multiple random groupings of patients, 625 

demonstrating the robustness of the real-time approach. Full statistical details, model 626 

specifications, and additional validation steps are provided in the Supplementary 627 

Materials. 628 

Data availability 629 

The data that support the findings of this study are not openly available due to reasons of 630 

sensitivity and are available from the corresponding author upon reasonable request. 631 

Code availability 632 
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All data was processed using custom MatLab, R and Python software, using specific 633 

libraries. Codes are available at https://github.com/dellabellagabriel/doc-brain-states.  634 

Acknowledgments 635 

This research was supported by Agencia Nacional de Promoción Científica y Tecnológica, 636 

Argentina (Grants #2018-03614, CAT-I-00083) and Stic Amsud project (CONN-COMA, 637 

2023). GDB and PB were supported by the National Scientific and Technical Research 638 

Council (CONICET - Argentina). DZ was supported by Beijing Natural Science Foundation 639 

(7254417) and by National High Level Hospital Clinical Research Funding. PG was 640 

supported by the National Natural Science Foundation of China (82201352) and the Youth 641 

Innovation Promotion Association of Chinese Academy of Sciences (2022267). LW was 642 

supported by the CAS Project for Young Scientists in Basic Research (YSBR-071) and 643 

the Shanghai Municipal Science and Technology Major Project (2021SHZDZX). YM and 644 

XW were funded by the Shanghai Municipal Science and Technology Major Project 645 

([2018SHZDZX01)], ZJLab and the Shanghai Center for Brain Science and Brain-Inspired 646 

Technology. XW was also funded by the National Natural Science Foundation of China 647 

(82271224). LW is a SANS (Shanghai Academy of Natural Sciences) Exploration Scholar. 648 

We thank Rodrigo Echeveste, Srivas Chennu, Damian Cruse, Demian Engemann,  649 

Federico Raimondo and Anat Arzi for useful discussions, and anonymous reviewers for 650 

useful suggestions. 651 

Contributions 652 

GADB conceived the project, conceived the analyses, coded and run the analysis, 653 

discussed results, wrote the manuscript; DZ conceived the project, designed the 654 

experiments and collected the data, conceived the analyses, discussed results, wrote the 655 

manuscript; PG conceived the project, designed the experiments and collected the data, 656 

conceived the analyses, discussed results, wrote the manuscript; DMM supervised data 657 

analysis, wrote the manuscript; JDS, provided data, discussed results, wrote the 658 

manuscript; TAB, discussed project and results, wrote the manuscript; DM, collected and 659 

provided, wrote the manuscript; BS, collected and provided, wrote the manuscript; FF, 660 

collected and provided data, wrote the manuscript; SS, conceived the project, provided 661 

data, discussed results, wrote the manuscript; PWL contributed to the implementation of 662 

the research, discussed analysis and results, wrote the manuscript; XW contributed to the 663 

implementation of the research, wrote the manuscript; YM contributed to the 664 

https://github.com/dellabellagabriel/doc-brain-states


 

 

22 

implementation of the research, wrote the manuscript; LW conceived the project, 665 

conceived the analyses, discussed data analysis and results; wrote the manuscript; PB 666 

conceived the project, conceived the analyses, discussed data analysis and results; wrote 667 

the manuscript. 668 

Conflicts of Interest 669 

There are no conflicts of interest 670 

Abbreviations 671 

CRS-R = Coma Recovery Scale Revised; DoC = Disorders of Consciousness; GCS = 672 

Glasgow Coma Scale; LZC = Lempel Ziv Complexity; MCS = Minimally Conscious State; 673 

UWS = Unresponsive Wakefulness Syndrome; wSMI = weighted Symbolic Mutual 674 

Information; WE = Weighted Entropy; TBI = Traumatic Brain Injury; SAH = Subarachnoid 675 

Hemorrhage 676 

References 677 

1. Edlow, B. L., Claassen, J., Schiff, N. D. & Greer, D. M. Recovery from disorders of 678 

consciousness: mechanisms, prognosis and emerging therapies. Nat. Rev. Neurol. 17, 135–679 

156 (2021). 680 

2. Naccache, L. Minimally conscious state or cortically mediated state? Brain 141, 949–960 681 

(2018). 682 

3. Formisano, R., D’Ippolito, M. & Catani, S. Functional locked-in syndrome as recovery phase 683 

of vegetative state. Brain Inj. 27, 1332–1332 (2013). 684 

4. Laureys, S., Owen, A. M. & Schiff, N. D. Brain function in coma, vegetative state, and related 685 

disorders. Lancet Neurol. 3, 537–546 (2004). 686 

5. Majerus, S., Bruno, M.-A., Schnakers, C., Giacino, J. T. & Laureys, S. The problem of aphasia 687 

in the assessment of consciousness in brain-damaged patients. Prog. Brain Res. 177, 49–61 688 

(2009). 689 

https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ


 

 

23 

6. Pincherle, A. et al. Early discrimination of cognitive motor dissociation from disorders of 690 

consciousness: pitfalls and clues. J. Neurol. 268, 178–188 (2021). 691 

7. Schnakers, C. et al. Diagnostic accuracy of the vegetative and minimally conscious state: 692 

Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9, 35 693 

(2009). 694 

8. Casali, A. G. et al. A Theoretically Based Index of Consciousness Independent of Sensory 695 

Processing and Behavior. Sci. Transl. Med. 5, 198ra105-198ra105 (2013). 696 

9. Sitt, J. D. et al. Large scale screening of neural signatures of consciousness in patients in a 697 

vegetative or minimally conscious state. Brain 137, 2258–2270 (2014). 698 

10. Tagliazucchi, E., Behrens, M. & Laufs, H. Sleep Neuroimaging and Models of Consciousness. 699 

Front. Psychol. 4, (2013). 700 

11. Tononi, G., Sporns, O. & Edelman, G. M. A measure for brain complexity: relating functional 701 

segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91, 5033–5037 702 

(1994). 703 

12. Carhart-Harris, R. et al. The entropic brain: a theory of conscious states informed by 704 

neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, (2014). 705 

13. Demertzi, A. et al. Human consciousness is supported by dynamic complex patterns of brain 706 

signal coordination. Sci. Adv. 5, eaat7603 (2019). 707 

14. Boly, M. et al. Brain connectivity in disorders of consciousness. Brain Connect. 2, 1–10 708 

(2012). 709 

15. Perez Velazquez, J. L., Mateos, D. M., Guevara, R. & Wennberg, R. Unifying biophysical 710 

consciousness theories with MaxCon: maximizing configurations of brain connectivity. 711 

Front. Syst. Neurosci. 18, (2024). 712 

16. Mateos, D. M., Erra, R. G., Wennberg, R. & Velazquez, J. L. P. Measures of Entropy and 713 

https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ


 

 

24 

Complexity in altered states of consciousness. Preprint at 714 

https://doi.org/10.48550/arXiv.1701.07061 (2017). 715 

17. Guevara Erra, R., Mateos, D. M., Wennberg, R. & Perez Velazquez, J. L. Statistical mechanics 716 

of consciousness: Maximization of information content of network is associated with 717 

conscious awareness. Phys. Rev. E 94, 052402 (2016). 718 

18. Perl, Y. S. et al. Non-equilibrium brain dynamics as a signature of consciousness. Phys. Rev. E 719 

104, 014411 (2021). 720 

19. Miskovic, V., MacDonald, K. J., Rhodes, L. J. & Cote, K. A. Changes in EEG multiscale entropy 721 

and power‐law frequency scaling during the human sleep cycle. Hum. Brain Mapp. 40, 538–722 

551 (2019). 723 

20. Olofsen, E., Sleigh, J. W. & Dahan, A. Permutation entropy of the electroencephalogram: a 724 

measure of anaesthetic drug effect. Br. J. Anaesth. 101, 810–821 (2008). 725 

21. King, J.-R. et al. Information Sharing in the Brain Indexes Consciousness in 726 

Noncommunicative Patients. Curr. Biol. 23, 1914–1919 (2013). 727 

22. Friston, K. J., Stephan, K. E., Montague, R. & Dolan, R. J. Computational psychiatry: the brain 728 

as a phantastic organ. Lancet Psychiatry 1, 148–158 (2014). 729 

23. Dehaene, S., Lau, H. & Kouider, S. What is consciousness, and could machines have it? 730 

Science 358, 486–492 (2017). 731 

24. Dehaene, S. & Changeux, J.-P. Experimental and Theoretical Approaches to Conscious 732 

Processing. Neuron 70, 200–227 (2011). 733 

25. Mashour, G. A., Roelfsema, P., Changeux, J.-P. & Dehaene, S. Conscious Processing and the 734 

Global Neuronal Workspace Hypothesis. Neuron 105, 776–798 (2020). 735 

26. Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from 736 

consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461 (2016). 737 

https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ


 

 

25 

27. Bekinschtein, T. A. et al. Neural signature of the conscious processing of auditory 738 

regularities. Proc. Natl. Acad. Sci. 106, 1672–1677 (2009). 739 

28. Faugeras, F. et al. Probing consciousness with event-related potentials in the vegetative 740 

state. Neurology 77, 264–268 (2011). 741 

29. Owen, A. M. et al. Detecting awareness in the vegetative state. Science 313, 1402 (2006). 742 

30. Demertzi, A. et al. Intrinsic functional connectivity differentiates minimally conscious from 743 

unresponsive patients. Brain J. Neurol. 138, 2619–2631 (2015). 744 

31. Malagurski, B. et al. Topological disintegration of resting state functional connectomes in 745 

coma. NeuroImage 195, 354–361 (2019). 746 

32. Silva, S. et al. Disruption of posteromedial large-scale neural communication predicts 747 

recovery from coma. Neurology 85, 2036–2044 (2015). 748 

33. Massimini, M. Breakdown of Cortical Effective Connectivity During Sleep. Science 309, 749 

2228–2232 (2005). 750 

34. Stender, J. et al. Diagnostic precision of PET imaging and functional MRI in disorders of 751 

consciousness: a clinical validation study. Lancet Lond. Engl. 384, 514–522 (2014). 752 

35. Ferrarelli, F. et al. Breakdown in cortical effective connectivity during midazolam-induced 753 

loss of consciousness. Proc. Natl. Acad. Sci. 107, 2681–2686 (2010). 754 

36. Rosanova, M. et al. Recovery of cortical effective connectivity and recovery of 755 

consciousness in vegetative patients. Brain J. Neurol. 135, 1308–1320 (2012). 756 

37. Allen, E. A. et al. Tracking Whole-Brain Connectivity Dynamics in the Resting State. Cereb. 757 

Cortex N. Y. NY 24, 663–676 (2014). 758 

38. Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. 759 

Proc. Natl. Acad. Sci. 112, 887–892 (2015). 760 

39. Tasserie, J. et al. Deep brain stimulation of the thalamus restores signatures of 761 

https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ


 

 

26 

consciousness in a nonhuman primate model. Sci. Adv. 8, eabl5547 (2022). 762 

40. Deco, G. et al. Awakening: Predicting external stimulation to force transitions between 763 

different brain states. Proc. Natl. Acad. Sci. 116, 18088–18097 (2019). 764 

41. Kringelbach, M. L. & Deco, G. Brain States and Transitions: Insights from Computational 765 

Neuroscience. Cell Rep. 32, 108128 (2020). 766 

42. Kodinariya, T. & Makwana, P. Review on Determining of Cluster in K-means Clustering. Int. J. 767 

Adv. Res. Comput. Sci. Manag. Stud. 1, 90–95 (2013). 768 

43. Uhrig, L. et al. Resting-state Dynamics as a Cortical Signature of Anesthesia in Monkeys. 769 

Anesthesiology 129, 942–958 (2018). 770 

44. Giacino, J. T., Fins, J. J., Laureys, S. & Schiff, N. D. Disorders of consciousness after acquired 771 

brain injury: the state of the science. Nat. Rev. Neurol. 10, 99–114 (2014). 772 

45. Sanz Perl, Y. et al. Perturbations in dynamical models of whole-brain activity dissociate 773 

between the level and stability of consciousness. PLOS Comput. Biol. 17, e1009139 (2021). 774 

46. Luppi, A. I. et al. Consciousness-specific dynamic interactions of brain integration and 775 

functional diversity. Nat. Commun. 10, 4616 (2019). 776 

47. Deco, G., Vidaurre, D. & Kringelbach, M. L. Revisiting the global workspace orchestrating the 777 

hierarchical organization of the human brain. Nat. Hum. Behav. 5, 497–511 (2021). 778 

48. Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter 779 

systems. Proc. Natl. Acad. Sci. 117, 9566–9576 (2020). 780 

49. Tagliazucchi, E. & Laufs, H. Decoding Wakefulness Levels from Typical fMRI Resting-State 781 

Data Reveals Reliable Drifts between Wakefulness and Sleep. Neuron 82, 695–708 (2014). 782 

50. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res 12, 2825–783 

2830 (2011). 784 

https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ
https://www.zotero.org/google-docs/?qWIcVJ


 

 

27 

Figures and Tables 785 

 786 

Figure 1. Analysis pipeline. A) Offline calculation of brain states: We utilized three 787 

datasets from different centers, comprising healthy controls and three patient categories 788 

(Minimally Conscious Syndrome [MCS], Unresponsive Wakefulness Syndrome[UWS], 789 

and Acute patients). Windowed wSMI matrices were computed from EEG data, followed 790 

by clustering analysis to identify 5 distinct brain states. The probability and association 791 

with patient prognosis were then evaluated. B) Real-time calculation of brain states: 792 

Simulating a bedside scenario, we processed 16 seconds of raw EEG data every 24 793 

seconds to generate raw-data wSMI matrices. By matching these matrices to the pre-794 

defined brain states obtained offline, we established real-time brain state identification. 795 

 796 

 797 
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 798 

Figure 2. EEG brain states and their distribution in DoC. A) Brain states ordered by 799 

entropy from 1 (high entropy) to 5 (low entropy). The upper triangular part of the matrices 800 

represents the centroids, or brain states, obtained from the clustering analysis. The value 801 

at row i and column j indicates the wSMI connectivity between electrode i and electrode j. 802 

The topographical plots illustrate the average of wSMI values for each electrode. B) 803 

Probability distributions of brain states across all groups. Brain state 1 is predominantly 804 

observed in healthy subjects, whereas the probability of brain state 5 increases with the 805 

severity of DoC. C) Dendrogram clustering displaying the Manhattan distances between 806 

brain states. D) Lempel-Ziv complexity as a function of entropy for each brain state. Brain 807 

States with higher variance exhibit greater entropy and Lempel-Ziv complexity. E) 808 

Weighted entropy across all groups, highlighting changes in entropy as a function of DoC 809 

severity (p-values corrected for multiple comparisons. *p < 0.05, ***p < 0.001). 810 

 811 
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 812 

Figure 3. Patient-specific brain states. A) Brain states defined using data exclusively 813 

from chronic patients. The upper triangular part of the matrices correspond to the 814 

centroids, a.k.a brain states resulting from the clustering analysis, and the value at row i 815 

and column j represents the wSMI connectivity value between electrode i and electrode j 816 

with brain states sorted by entropy from 1 (high entropy) to 5 (low entropy). The 817 

topographical plots show the average wSMI value for each electrode. B) Probability 818 

distribution of all 5 brain states for MCS and UWS. C) Lempel-Ziv complexity as a function 819 

of entropy for each patient-specific brain state. D) WE for both groups. The weighted 820 

entropy values follow the same trend, supporting the differentiation of brain states based 821 

on the level of consciousness. (p-values were corrected for multiple comparisons, **p < 822 

0.01). 823 

 824 
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 825 

Figure 4. Relationship between brain states and patients' prognosis. A) WE as a 826 

function of chronic patients' outcome. The graph shows that in chronic patients, the WE 827 

tends to be higher as the probability of patient improvement increases. B) WE as a function 828 

of acute patients' outcomes. Similarly, in acute patients, the WE tends to be higher in 829 

patients who show improvement in their condition. (p-values were corrected for multiple 830 

comparisons, *p < 0.05, **p < 0.01). 831 
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 832 

Figure 5. Real-time EEG brain states. A) WE values calculated for acute patients, using 833 

both offline and real-time methods. B) Individual WE values calculated in real-time closely 834 

matched those obtained through the offline procedure, which included EEG signal 835 

cleaning and proper preprocessing. C) The null distribution of Jensen-Shannon distance 836 

values between random partitions of the offline data is shown. The error bar represents 837 

the estimated value and uncertainty for the real-time calculations, which fall within the 838 

distribution, demonstrating the reliability of real-time WE estimation. D) Prognosis as a 839 

function of WE values calculated in real-time. D) Classification of patients versus controls 840 

based on real-time data. (p-values were corrected for multiple comparisons, *p < 0.05, **p 841 

< 0.01). 842 

 843 

 844 
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 845 

Supplementary Figure 1. Schematic of the Weighted Symbolic Mutual Information 846 

Calculation. A) The continuous EEG time series from each electrode is transformed into 847 

a discrete sequence of symbols. Each symbol consists of three elements, with each 848 
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sample separated by a time delay (τ), resulting in a total of six possible symbols based on 849 

the signal pattern. B) Once the signal is transformed into its discrete version, a time series 850 

of symbols is obtained for each electrode. This allows for the computation of the joint 851 

probability distribution between electrodes X and Y, enabling the calculation of Symbolic 852 

Mutual Information. C) To prevent contamination from passive cranial conductivity 853 

artifacts, and in accordance with methodological references, the mutual information matrix 854 

is weighted by disregarding equal and opposite symbols. Additionally, diagonal elements, 855 

representing mutual information calculations between identical channels, are removed to 856 

ensure that only non-identical symbols contribute to the final wSMI measure. 857 

 858 

Supplementary Figure 2. Optimal Number of Clusters. A) Within-cluster distance as a 859 

function of the number of clusters (k) for k = 3 to 7. The within-cluster distance reaches its 860 

minimum at k = 5 (the "elbow"), indicating that this is the optimal number of clusters that 861 

balance compactness and interpretability. B) WE across conditions for k = 3 to k = 7. 862 

Regardless of the number of centroids considered, WE decreases monotonically from 863 

Healthy to Acute, demonstrating a robust trend across clustering solutions. 864 

 865 
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 866 

Supplementary Figure 3. Cross-Site Brain State Correlations. A) Brain states 867 

identified through clustering analysis applied separately to each site. The matrices 868 

represent the wSMI connectivity patterns corresponding to each brain state. The 869 

accompanying topoplot is derived by averaging the columns of the matrices, providing a 870 

visualization of the average connectivity per electrode. B) Correlation analysis between 871 

centroid i from the combined dataset across all sites and centroid j from each individual 872 

site, assessing the consistency of brain state representations across different recording 873 
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locations. C) Probability distribution across conditions using brain states obtained from 874 

Shanghai (top), Paris (middle) and Toulouse (bottom).  875 

 876 

Supplementary Figure 4. Consistency of Brain States Across Datasets and 877 

Electrode Number. A-C) Brain states ordered by entropy from 1 (high entropy) to 5 (low 878 

entropy), calculated independently for all centers. The brain states display a consistent 879 

pattern across datasets, with high-entropy states associated with healthy subjects and the 880 

frequency of low-entropy states correlating with the severity of the condition in patients. 881 

D) Probability distribution obtained with 64 electrodes. E) WE obtained with 64 electrodes. 882 

F) Probability distribution obtained with 32 electrodes. G) WE obtained with 32 electrodes. 883 
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 884 

Supplementary Figure 5. Real time and offline acute-patient brain state 885 

distributions. Comparison of brain state distributions in acute patients obtained through 886 

real-time and offline EEG analyses. This figure illustrates the consistency between real-887 

time estimations and offline calculations, highlighting the reliability of real-time EEG-based 888 

brain state assessments. 889 
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 890 

Supplementary Figure 6. Entropy and Complexity of the Timeseries. A) Shannon 891 

entropy of the timeseries across conditions. Entropy is lower in Acute compared to the 892 

other conditions, with a statistically significant difference relative to Healthy (***p < 0.001). 893 

B) Statistical complexity of the timeseries for each condition. Complexity is higher in Acute 894 

compared to the other conditions, with a statistically significant difference relative to 895 

Healthy (***p < 0.001). 896 

Supplementary Table 1. Age and gender for all participants. 897 

Supplementary Table 2. Correlation between brain states obtained from different 898 

experimental conditions. Participants listened to words, phrases and sentences while 899 

EEG was recorded.  900 

Supplementary Table 3. Summary of preprocessing parameters for the three sites. 901 


