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Abstract
Humans often face decisions between multiple alternatives. However, our grasp of the computations
underlying this process is still limited. While some evidence suggests that only the chosen alternative is
represented at the decision stage, other findings indicate that information from unchosen alternatives
remains accessible for decision computations. Furthermore, the amount and kind of information that
reaches metacognitive levels remains unexplored. We ran two pre-registered experiments using a
second-guess paradigm to understand to what extent humans retain information from choices that were
discarded in a first guess. We found consistent above chance performance and metacognition in a
second-guess with a 4 alternative (Exp. 1) and 12 alternative task (Exp. 2). Computational modeling
suggests both the decision and metacognitive systems maintain a noisy version of the information from
all alternatives. Overall, our results suggest that, although suboptimally, humans take into account
evidence from unchosen options in multialternative perceptual decision making and metacognition.

Keywords: perceptual decision making; metacognition; confidence; multialternative decisions;
computational modeling.

Statement of relevance
When deciding and metacognitively evaluating decisions involving multiple courses of action, it is
unknown whether humans can encompass information from all available alternatives or merely retain
data from the chosen option. In this work we ask participants to select the correct option among many
alternatives. When their decision was incorrect we gave them a second opportunity. We found that
participants had both above chance performance and metacognition on this second judgment. These
results, coupled with computational models of the decision process, provide evidence that information of
unchosen options is retained. However, the noise that corrupts this information is larger with 12 than with
4 alternatives. Our results point out that information of all alternatives competes in influencing a decision
and informs confidence judgments for a meaningful metacognitive evaluation of the performance
—although this information is not recovered in a completely optimal way.



Introduction
Perceptual decision making, i.e. decisions human observers make about sensory information (Hanks &
Summerfield, 2017; Heekeren et al., 2008), have been extensively studied using 2-alternative forced
choice (2-AFC) tasks. Empirically driven computational models of this process suggest that the observer
takes into account the evidence supporting the two competing alternatives and the decision corresponds
to the alternative with highest evidence (Shadlen & Kiani, 2013). However, as many decisions are not
binary, there is a growing interest in understanding the nuances of multi-alternative decisions
(Busemeyer et al., 2019; Churchland et al., 2008; Rahnev et al., 2022; Turner et al., 2018), that are
thought to reflect more naturalistic scenarios than 2-AFC paradigms (Yeon & Rahnev, 2020).

A key question in multi-alternative decision making is whether humans hold individual representations of
all available alternatives to arrive at a decision —an assumption of virtually all computational models of
decision-making— or, alternatively, humans create an abbreviated representation of all options, encoding
only the most subjectively salient or valuable stimuli. Recently, Yeon & Rahnev (2020) designed an
experimental framework involving "second guesses" in which participants were allowed to revise their
choice after an initial incorrect decision. If information from the remaining alternatives is lost at the
second guess stage, performance would be expected to reach chance levels. Conversely, if information
from unchosen alternatives can reach the decision stage and it is effectively used to make a second
judgment, then above-chance performance levels should be found. Their findings favored a "Summary"
model in which solely the information from the chosen alternative contributes to the decision
representation, suggesting that a great loss of information occurs in multi-alternative perceptual decision
making. In contrast, McLean et al. (2020) found that participants' second-guesses performance was
significantly above-chance, suggesting that decision computations have access to the evidence from
unselected alternatives —a result inline with previous multi-alternative studies (Busemeyer et al., 2019;
Churchland et al., 2008; Dumbalska et al., 2020; Niwa & Ditterich, 2008a; Turner et al., 2018).

In addition, the impact of these two scenarios on metacognition —the ability to monitor our own cognitive
processes (Fleming, 2024)— remains untested. On one hand, the summary encoding view implies that
the metacognitive system has no information to evaluate the quality of a second judgment. On the other
hand, if unchosen options evidence can reach decision stages, then there is the possibility of meaningful
metacognitive evaluation of those decisions. Moreover, previous models suggest a separate route of
evidence for metacognitive computations (Maniscalco & Lau, 2016), which could lead to dissociations
between decision performance and metacognition in multi-alternative judgments.

To arbitrate between this contradictory evidence and clarify the nature of the multi-alternative decision
and metacognitive representations, we carried out two pre-registered experiments that varied in the
amount of alternatives and put to test three computational models with different degrees of loss of
information. Participants had to identify the largest geometrical figure from a set and were given a
second opportunity to make a choice if their initial selection was incorrect. In addition, they were
requested to report their confidence in this second judgment, which allowed us to test whether a
dissociation between decision and metacognitive levels regarding the amount and type of evidence used
for computations was present (Fleming & Dolan, 2012).

To summarize, our results indicate that information from all alternatives is present at the decision and
metacognitive stages. This was reflected in above chance levels for both second guess performance and
metacognitive sensitivity in both a 4-alternative context (Experiment 1) as well as in a 12-alternative
context (Experiment 2). Nevertheless, our results do not support the view that an exact copy of the
sensory information is available at those levels, since the best fitting model included extra noise at the
second-guess stage. Importantly, more alternatives induced a higher amount of information loss, as
illustrated by the results found in Experiment 2 where smaller effect sizes were found and where the
model that proposes that an exact copy of the sensory information is present at decision and
metacognitive levels —which was as good as the model with the extra noise parameter in Experiment
1— was the worse-fitting model.
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Methods – Experiment 1
Experiment 1 was programmed in JavaScript using the library jQuery and ran on a JATOS (Lange et al.,
2015) server. The experimental protocol was approved by the ethical committee of the Psychological
Research Institute (National University of Córdoba & National Scientific and Technical Research Council
– Córdoba, Argentina). The experiment was pre-registered https://osf.io/9w6ju.

Participants
18 participants took part in Experiment 1 (13 females; Mage = 24.5; SDage = 3.37). Sample size was
calculated using the GPower software to reach >80% power to detect a significant difference in the
t-tests performed (see the pre-registration at https://osf.io/9w6ju for details). Participants read and
accepted an informed consent sheet prior to the experiment. All participants reported no psychiatric or
neurological history and no chronic consumption of psychoactive substances.

Procedure and experiment design
Experiment 1 (Figure 1A) involved a 4-alternative perceptual decision making task. Participants sat 81
centimeters away from the screen, and completed two experimental sessions on different days, each
including 10 practice trials and 350 experimental trials. First, participants were presented with a fixation
dot displayed on the center of the screen for 800ms, followed by a stimuli array consisting of geometrical
shapes (squares and circles) in a 2x2 grid for 500 ms (stimuli were separated both vertically and
horizontally by 6.31° of visual angle). The task was to identify the largest shape among randomly
presented squares and circles. Only a single figure was the largest, and the others were equally sized.
The largest figure had an equal probability of appearing in any position. The largest figure had a mean
size of 1.33° of visual angle, with a standard deviation of 0.33° of visual angle. To pick a figure,
participants clicked on the position where the figure they believed was the largest one was present
(positions were signaled with small dots after stimuli disappearance). If the decision was correct, the next
trial began automatically. Otherwise, they had a second opportunity to choose one of the remaining
figures. Chance level for this second decision is therefore defined as a proportion of correct trials of ,1

3

since it is made on 3 alternatives. After each second judgment, participants reported their confidence on
being correct on a 4-point scale by clicking on any of four buttons representing the scale. The spanish
phrases “nada seguro” and “completamente seguro” (translating to “not sure at all” and “completely
sure”, respectively) were displayed below the 1 and 4 buttons, respectively. A 1up/1down staircase was
implemented on the first 60 trials of the task to obtain 50% accuracy on the first choice, to ensure a
sufficient number of second decisions. The variable controlled by the staircase was the size of the
incorrect alternatives, defined as a proportion of the area of the correct alternative. After each incorrect
choice the size of the incorrect alternatives decreased by a proportion of the area of the correct
alternative equals to .005, whereas after each correct choice this proportion increased by .005. After the
first 60 trials, the average size difference from trials 50 to 60 was computed and this was the size
difference between correct and incorrect figures used in the rest of the trials. In each session, two rest
pauses were included at trials 120 and 240. In those breaks, a message informing participants that they
can take a couple of minutes to rest was presented on the screen. Participants clicked anywhere on the
screen to continue with the experiment after the rest period.

Data analysis
We excluded trials with response times (RT) larger than 8 s or shorter than 150 ms on any of the
responses (first and second decision, and confidence report). We discarded the first 60 trials (which
included the practice trials and the trials with the staircase). No subject was excluded. Our predefined
alpha level was .05.

For each subject, we computed the proportion of correct responses on the first decision (first decision
performance), the proportion of correct responses on the second decision (second decision
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performance) and metacognitive sensitivity on the second decision. We operationalized metacognitive
sensitivity as the area under a Receiver Operating Characteristic curve (Fleming & Lau, 2014).

We used one-tailed t-tests to compare the second decision performance and the metacognitive
sensitivity level to chance levels ( and , respectively). We also explored, using linear regression1

3
1
2

models, if second decision performance was predicted by first decision performance and if metacognitive
sensitivity was predicted by second decision performance.

All of these analyses and criteria were pre-registered and can be found at https://osf.io/9w6ju.

Figure 1 – Experiment 1 task. Experiment 1 consisted of a size discrimination task where
participants had to identify the largest geometrical shape within a set. If a decision was correct, the
next trial began automatically. Otherwise, participants had a new chance to identify the figure out of
the remaining ones. After this second guess, participants reported their confidence on being correct
on a 4-point scale.

Computational modeling
We compared three different computational models to evaluate different possible information processing
scenarios regarding the evidence available in multi-alternative perceptual decision making. Each model
points to a different degree of loss of information. All models start with the same process: random
samples (one for each alternative) are generated from a Gaussian distribution with mean (fixed at 1 forµ

𝑖

the largest alternative and to the proportion of the area of the largest figure obtained for each subject for
the rest of the alternatives) and standard deviation . While are fixed, is fitted to each participant byσ µ

𝑖
σ

maximizing its log-likelihood given the data (first decisions, second decisions and metacognitive
sensitivity). The first decision corresponds to the geometrical figure associated with the highest sample
obtained. If the decision is correct, the trial ends. If the decision is incorrect, three possibilities arise, each
corresponding to a different model. We next describe each model in detail.

Summary model. The Summary model proposes that the observer arrives at a decision taking into
account only the information of the alternative with the highest obtained sample, following the proposal of
Yeon and Rahnev (2020). Hence, when prompted for a second decision, the observer has no information
about non-chosen alternatives, leading to both a random decision and random confidence levels.

Population model. The Population model proposes that at the decision instance the activity of all the
alternatives is represented and sustained until the end of the decision process (McLean et al., 2020;
Yeon & Rahnev, 2020). Therefore, when prompted for a second decision, the observer will choose the
alternative whose associated evidence is maximum out of all previously non selected options (i.e., the
second highest sample overall). Confidence on this second decision under this model can have several
mappings: it can reflect the level of activation of the alternative chosen (“Max model”; Zylberberg et al.,
2012), the difference between the two highest activations (“Balance of evidence model”; Li & Ma, 2020;
Mamassian, 2016), the sum of the differences between the highest activation and the rest (“Contrast
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model”; Comay et al., 2023), and the difference between the activation of chosen alternative and the
mean of the rest activations (“Average-residual model”; Comay et al., 2023).

Population + noise model. The Population + noise model proposes that, as in the Population model, at
the decision instance the activity of all the alternatives is represented. However, random Gaussian noise
with mean 0 and standard deviation corrupts the samples at the second decision stage. is a freeσ

2
σ

2

parameter fitted to each subject by maximizing its log-likelihood. Confidence has the same possible
mappings as in the Population model.

In order to compute metacognitive sensitivity, in all models a confidence criterion parameter is fitted toβ
each subject by maximizing its log-likelihood. This parameter categorizes models’ predicted confidence
into high and low, and this transformed confidence is used to compute the AUROC-2 predicted by the
model.

Model fitting procedure
We fitted the free parameters ( , and in the case of the Population + noise model) by maximizingσ β σ

2

their log-likelihood. To compute the log-likelihood we simulated 2000 trials and computed the model’s
probability of being correct on the first and second decisions and the predicted metacognitive sensitivity.
We repeated this process 10 times, and took the mean of the 10 probabilities of being correct on the first
and second decisions to approximate the true probabilities predicted by the model. We computed the
probability of the data given the parameters values using the binomial data model and the previously
calculated probabilities using the dbinom function in R. To model metacognitive sensitivity we followed a
similar approach but using a normal data model: using the dnorm function in R we computed the
probability of the metacognitive sensitivity data given the parameters. To calculate the mean and
standard deviation of the normal distribution we computed the mean metacognitive sensitivity of the 10
simulations and the standard deviation of those simulated metacognitive sensitivities, respectively.

We started the fitting procedure with a coarse grid search to find sensible initial values for the
parameters and then runned 3 gradient descent routines using the optim function in R. In order to have
different initial values, for each routine we slightly corrupted the initial values of the parameters with
Gaussian noise with mean zero and 0.05 standard deviation.

For the Population and the Population + noise model we fitted four different variations of the model, each
differing in the confidence mappings. The best fitting variation (i.e., the one with maximum log-likelihood)
was selected for comparison between models.

Parameter recovery
We ran a parameter recovery analysis and found that our method was able to recover the true
parameters values. We obtained significant Pearson correlations between the true and the recovered
parameters of 0.80 (p < .001, CI = [0.71; 0.86], df = 98) for the parameter, to 0.36 (p < .001, CI = [0.17;σ
0.52], df = 98) for the parameter and to 0.32 (p = .001, CI = [0.14; 0.49], df = 98) for the parameter.σ

2
β

Model comparison
We compared the performance of the three models by using the Bayesian Information Criterion (BIC).
We ran Welch’s two sample t-tests between the models using the BIC values of each subject under each
model. The formula used for the BIC was:

𝐵𝐼𝐶
𝑖
 =  𝑘 𝑙𝑜𝑔(𝑛) − 2 𝑙𝑜𝑔(𝐿

𝑖
)
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Where is the number of free parameters (2 for the Summary and Population model, 3 for the𝑘
Population + noise model), is the number of data points (600), is the likelihood of the parameters𝑛 𝐿
given the data and indexes the subjects.𝑖

Results – Experiment 1
Behavioral results
Participants had a mean performance for the first decision of 0.68 (SD = 0.06; Figure 2A). Importantly
and as predicted in the pre-registration, participants showed above chance second decision performance
(t17 = 10.03, p < .001, d = 2.36, M = 0.54, CI = [0.51; Inf]; Figure 2B) and also above chance
metacognitive sensitivity (t17 = 8.92, p < .001, d = 2.10, M = 0.61, CI = [0.59; Inf]; Figure 2C).

We next explored how these variables related to each other. We found that first decision performance
significantly predicted performance in the second decision (F1,16 = 14.5, 𝛽first decision = 0.95, SE = 0.25, p =
.002, R2 = 0.44; Figure 2D) and second decision performance significantly predicted metacognitive
sensitivity (F1,16 = 9.48, 𝛽second guess = 0.36, SE = 0.12, p = .007, R2 = 0.33; Figure 2E).

Figure 2 – Experiment 1 behavioral results. A) Performance on the first decision. B) Second
decision performance was significatively above chance level. C) Metacognitive sensitivity was
significantly above chance level. In panels A, B and C chance level is depicted by the gray horizontal
dotted lines, jittered dots represent the score of an individual participant, box plots depict the median
and the interquartile range (with whiskers that represent 1.5 IQR) and the curves represent the
density of the data. D) An increase in first decision performance significantly predicted an increase in
second decision performance. E) An increase in the second guess performance predicted an
increase in metacognitive sensitivity. In panels D and E dots represent individual participants, solid
lines represent the regression line and the smoothed area represents the 95% confidence interval.

Computational modeling
As predicted, the Summary model could not fit the pattern found in our data. Indeed, despite accurately
predicting first decision performance, the model underestimated second decision performance and
metacognition, thus strongly deviating from empirical data (Figure 3 – top row). On the other hand, the
Population model and the Population + noise model were better at accommodating the pattern of our
data (Figure 3 – middle and bottom rows). The Population model, however, overestimated the accuracy



of the second judgment made by the participants. By comparing the models using the BIC to correct for
the number of parameters, we found that both the Population and the Population + noise models were
better than the Summary model (Population + noise model vs Summary model: t17.57 = –5.72, p < .001, d
= 1.91, MPopNoise = 27.44, MSummary = 70.83, CI = [–59.34; –27.43]; Population model vs Summary model:
t19.35 = –5.85, p < .001, d = 1.95, MPopulation = 25.31, MSummary = 70.83, CI = [–61.77; –29.26]; Figure 7A), but
there was not a significant difference regarding BIC scores between the Population and the Population +
noise models (t24.76 = –0.97, p = .344, d = 0.32, MPopulation = 25.31, MPopNoise = 27.44, CI = [–6.68; 2.42];
Figure 7A).

Figure 3 – Experiment 1 model fitting results. While accurately predicting the performance on the
first judgment, the Summary model underestimated both second decision and metacognitive
performance (top row). In contrast, both the Population model (middle row) and the Population+noise
model (bottom row) accurately fitted the data with the Population model overestimating the second
decision performance. In all panels dots represent individuals, solid lines represent regression lines
and shaded regions represent 95% confidence intervals. Yellow panels (first column) represent first
decision data, dark green panels (second column) represent second decision data and olive panels
(third column) represent metacognitive data.

Methods – Experiment 2
Results of Experiment 1 point out that information from all four alternatives is not entirely lost and informs
the decision-making and metacognitive processes. As pre-registered, we subsequently expanded our
investigation by testing with 12 alternatives.

As in Experiment 1, Experiment 2 was programmed in JavaScript using the library jQuery and ran on a
JATOS (Lange et al., 2015) server. The experimental protocol was approved by the ethical committee of
the Psychological Research Institute (National University of Córdoba & National Scientific and Technical
Research Council – Córdoba, Argentina). The experiment was pre-registered https://osf.io/d5qyp/.
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Participants
18 participants took part in Experiment 2 (14 females; Mage = 23.78; SDage = 2.94). Sample size was
calculated using the GPower software to reach >80% power to detect a significant difference in the
t-tests performed (see the pre-registration at https://osf.io/9w6ju for details) Participants read and
accepted an informed consent sheet prior to the experiment. All participants reported no psychiatric or
neurological history and no chronic consumption of psychoactive substances.

Procedure and experiment design
Experiment 2 (Figure 4) was identical to Experiment 1 but with twelve instead of four alternatives. The
procedure was exactly the same as in Experiment 1: participants sat 81cm from the screen and
completed two sessions of 360 trials each in two different days. Figures were displayed on a 3x4 grid,
and were separated (vertically and horizontally) by the same degrees of visual angle as in Experiment 1.
As a result, the farthest from the center that an alternative could be was 9.46° horizontally and 6.31°
vertically. Chance level for the second guess performance was equal to , since 11 alternatives are left1

11

for the second judgment.

Figure 4 – Experiment 2 task. The task was identical to Experiment 1, but comprising twelve
instead of four alternatives.

Data analysis
We followed a procedure similar than for Experiment 1, with the difference that the chance level used for
the t-test on the second guess performance was equal to . All of these analyses and exclusion criteria1

11

were pre-registered: https://osf.io/9w6ju.

Results – Experiment 2
Behavioral results
In spite of the much larger number of alternatives, similar results were obtained in Experiment 2.
Performance on the first decision had a mean of 0.60 (SD = 0.06; Figure 5A). Participants again showed
above chance second guess performance (t17 = 9.40, p < .001, d = 2.22, M = 0.20, CI = [0.18; Inf]; Figure
5B) and also above chance metacognitive sensitivity (t17 = 6.89, p < .001, d = 1.62, M = 0.59, CI = [0.57;
Inf]; Figure 5C). Note that, as predicted, effect sizes were smaller on this experiment.

When exploring the relationships between these variables, we found that —contrary to the Experiment 1
results— performance on the first decision did not predict second decision performance (F1,16 = 2.62, 𝛽first
decision = 0.28, SE = 0.17, p = 0.12, R2 = 0.09; Figure 5D) and performance on the second decision did not
predict metacognitive sensitivity (F1,16 = 0.01, 𝛽second guess = –0.03, SE = 0.28, p = .92, R2 = –0.06; Figure
5E).
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Figure 5 – Experiment 2 behavioral results. A) Performance on the first decision. B) Second
decision performance was significatively above chance level. C) Metacognitive sensitivity was
significantly above chance level. E and D) Contrary to Experiment 1, an increase in first decision
performance did not predict an increase in second decision performance and an increase in the
second guess performance did not predict an increase in metacognitive sensitivity. The conventions
on this figure are the same as in Figure 2.

Computational modeling
We again found evidence against the Summary model, as this model underestimated participants’ ability
to perform meaningful second judgments and to give accurate confidence ratings that led to
above-chance metacognitive sensitivity (Figure 6 – top row). However, and in line with the prediction that
more information will be lost in this second experiment, the worst-fitting model was the Population model,
which overestimated second decision performance and underestimated first decision performance
(Figure 6 – middle row). The best-fitting model was the Population + noise model. Interestingly, despite a
better fitting, the model underestimated participants’ metacognitive sensitivity (Figure 6 – bottom row).



Figure 6 – Model fitting results on Experiment 2. Similar to the results on Experiment 1, the
Summary model underestimated both second decision and metacognitive performance (top row). The
Population model consistently underestimated first decision performance and overestimated second
decision performance (middle row). The Population + noise (bottom row) was the best-fitting model,
accurately predicting first and decision performance but underestimating metacognitive sensitivity.
The conventions in this figure are the same as in Figure 3.

We compared the BIC of the models between them and found that the Population + noise model was
significantly better than the Summary model (t21.17 = –4.44, p < .001, d = 1.48, MPopNoise = 30.34, MSummary =
50.61, CI = [–29.77; –10.78]; Figure 7B) and the Population model (t20.36 = –6.55, p < .001, d = 2.19,
MPopNoise = 30.34, MPopulation = 63.44, CI = [–43.62; –22.59]; Figure 7B). Interestingly, we found marginally
significant evidence that the Summary model fitted the data from Experiment 2 better than the Population
model (t33.59 = 1.98, p = .055, d = 0.66, MPopulation = 63.44, MSummary = 50.61, CI = [–0.30; 25.96]) (Figure
7B).

Taking into account both experiments, we found that the Population + noise model was the overall best
fitting model, being significantly better than both the Population (t38.51 = –3.67, p < .001, d = 0.86, MPopNoise

= 28.89, MPopulation = 44.38, CI = [–24.03; –6.94]) and the Summary (t37.82 = –6.78, p < .001, d = 1.60,
MPopNoise = 28.89, MSummary = 60.72, CI = [–41.33; –22.33]) models (Figure 7C). The Population model was
the second best fitting model, as it was better than the Summary model (t69.16 = 2.65, p = .01, d = 0.62,
MPopulation = 44.38, MSummary = 60.72, CI = [4.03; 28.66]; Figure 7C).



Figure 7 – Model comparison through the Bayesian Information Criterion. (A) The Population and
the Population + noise models were the best fitting models on Experiment 1. (B) On Experiment 2, the
Population + noise model was the best fitting model, while the Population model was the worst. (C) By
combining the results of the two Experiments we found compelling evidence that the Population + noise
model was the best fitting model to our data. Dots represent individual scores, columns represent mean
values and vertical bars represent 95% confidence intervals. Note that higher scores of BIC means
worse fitting.

Discussion
In the present work we have studied the multialternative representations of decision-making and
metacognition. The underlying motivations were that contradictory results were found regarding the
amount of information available at the decision stage (McLean et al., 2020; Yeon & Rahnev, 2020) and,
moreover, there was an open question about whether this —or different— information can reach the
metacognitive level.

Our results suggest that human decision-makers can recover information from unchosen alternatives in
order to give meaningful second guesses and confidence ratings, even in complex multialternative
contexts. Nevertheless, the idea of decisions and metacognitive representations carrying on an exact
copy of the sensory information is not supported by the data, as the Population model was outperformed
by the Population + noise model. This latter model includes extra noise that corrupts the decision
representation at the second decision stage, meaning that some —but not all— information gets lost at
this level, thus conciliating previously contradictory results. Indeed, as Yeon and Rahnev (2020) suggest,
an exact copy of the sensory information may be present in more automated processes —such as
multisensory integration— or in simple 2AFC tasks, but for multialternative decisions, the decision
making and metacognitive systems appear to lose some of the available information.

Traditionally, perceptual decision making and metacognition have been studied using 2AFC tasks. The
computational models developed under this approach assume that the information from the competing
alternatives is represented by the observer, and the decision is made by judging the relative evidence for
each alternative (Shadlen & Kiani, 2013). Our results suggest that this assumption extends to
multialternative decisions, as even in a 12-alternative decision making task human observers can
recover information from unchosen options. Moreover, metacognitive computations can access this
information too as metacognitive sensitivity was above chance in both experiments.

The fact that —although noisy— information from unchosen alternatives accesses the decision stage is
also inline with several contextual effects that arise in multi-alternative decision making tasks both in
decisions (Busemeyer et al., 2019; Trueblood et al., 2013) and in confidence judgments (Comay et al.,
2023). Moreover, as most computational accounts of these effects rely on the assumption that
information of all alternatives is available and combined in a specific —non rational— way (Busemeyer et
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al., 2019; Dumbalska et al., 2020; Turner et al., 2018), the evidence reported here is then critical to
sustain those explanations.

How can our results and those obtained by McLean et al (2020) be reconciled with those reported in
Yeon & Rahnev (2020) —pointing to a strong loss of sensory representation during decision stages?
One possibility is that other factors apart from the amount of alternatives influence the loss of information
in multi-alternative perceptual decision making. Rosenholtz (2020) indicates that two main factors
influence the loss of information in visual perception: the limits that peripheral vision gives for performing
certain tasks and the limits of the decision mechanisms that cannot perform arbitrarily complex tasks. In
this sense, Yeon & Rahnev (2020) tasks induce loss of information according to these two main factors.
First, the information of the stimuli used in their Experiments 1, 2 and 3 —symbols and colors much more
complex than stimuli in our tasks— may be lost already in the peripheral encoding as, for instance, color
peripheral vision is limited and the distinction of features that requires binding (such as distinguishing
between letters or symbols) requires selective attention and are propense to crowding effects
(Rosenholtz, 2016, 2020). Second, these tasks involve both recognizing each individual stimulus and
estimating their frequency while taking into account the frequency of the other stimulus categories (a kind
of triple task that can also induce loss of information due to decision complexity, see Rosenholtz, 2020).
On the other hand, one can argue that our task was simpler both perceptually (alternatives are
distinguishable by their size) and conceptually (only one variable —i.e., the size of alternatives— is
relevant for performing successfully). In this same line, the task used by Mc Lean et al. (2020) may have
not induced loss of information since it involved only one extra competing alternative compared to the
classic 2-AFC tasks. Their result is inline with previous computational models applied to similar
multialternative random dot motion tasks that explicitly take into account the evidence of each possible
direction (Churchland et al., 2008; Niwa & Ditterich, 2008) —although see Experiment 4 in Yeon &
Rahnev (2020). In short, although important, the amount of alternatives itself is not the only factor at play
when considering how much information can reach decision and metacognitive levels in perceptual
decision making. Further research is needed to evaluate the weight and interplay of these factors
(stimulus complexity, task complexity, number of alternatives) on the loss of information in
multialternative decisions.

Multiple empirical dissociations between metacognition and performance suggest that different
information or information with different quality is available for metacognitive judgments such as
confidence ratings (Fleming & Dolan, 2012). In this sense, some computational models explicitly suggest
a separate line of evidence for metacognitive judgments (Mamassian, 2016; Mamassian & De Gardelle,
2022) and others propose a hierarchical structures where “type 2” judgments (e.g. confidence) evaluates
the quality of the “type 1” (e.g. decision) information (Maniscalco & Lau, 2016). Our results are inline with
these views as the Population + noise model underestimated the metacognitive sensitivity found in our
data, specially in Experiment 2. As the model only has access to the information of the type 1 judgment
for computing metacognitive sensitivity —a kind of “single-channel” model (Maniscalco & Lau, 2016)—,
an upper bound for the predicted metacognitive ability is then established. Consequently, the higher
metacognitive levels found compared to the model’s predictions suggest that confidence judgments had
extra or different information than the one that supports type 1 judgments, resulting in a boosted
metacognitive sensitivity. Indeed, on Experiment 2 there was not an association between performance in
the second decision and metacognition, suggesting that participants that lost more sensory information
to inform their decisions nevertheless had information to inform their metacognitive judgments. One
limitation of this finding is that the AUROC-2 measure can be affected by task performance (Fleming &
Lau, 2014; Maniscalco & Lau, 2012). Unfortunately, no alternative method has been developed yet to
address metacognition independently of performance in multialternative decision tasks, and even
methods that seem promising in controlling for performance confounds have been shown to fail with
respect to that aim (Rahnev, 2023). Further research is needed to precisely evaluate metacognition
independently of performance in multialternative decision tasks.

https://www.zotero.org/google-docs/?AU9fUZ
https://www.zotero.org/google-docs/?I3FKT5
https://www.zotero.org/google-docs/?XbOo6s
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https://www.zotero.org/google-docs/?9xlEo0
https://www.zotero.org/google-docs/?JbFpdO
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Previous research has suggested that confidence may ignore information of unchosen options and only
rely on the evidence favouring the selected option, an effect termed “positive evidence bias” (Maniscalco
et al., 2016; Zylberberg et al., 2012). While we did not test for this phenomenon here, our results suggest
that this —possibly— neglected information of unchosen options can be later accessed by confidence
judgments when humans are asked about a second guess, as confidence reports were informative about
second decision performance. This means that although confidence can be biased by the evidence
favouring the chosen option, the evidence against it does not remain inaccessible to metacognitive
levels.

In conclusion, here we found that, although suboptimally, humans decision makers can retain information
from unselected alternatives when facing a multi-alternative decision. Moreover, the metacognitive
system can access this information as well. Our results suggest, however, that an exact copy of the
sensory representation is not present at the decision and metacognitive level, as the model including
noisy versions of the representations was the best fitting model to our data. These findings support
previous multialternative models that assume that information from all alternatives is represented by
human decision makers both for decisions and confidence computations.
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