

Event-related potentials associated with attentional and vigilance components

Journal:	Psychophysiology
Manuscript ID	PsyP-2022-0001.R1
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	09-Jun-2022
Complete List of Authors:	Luna, Fernando; Universidad Nacional de Córdoba, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología Aguirre, María; Universidad Nacional de Córdoba, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología Martín-Arévalo, Elisa ; University of Granada Faculty of Psychology, Experimental Psychology Ibáñez, Agustín; Universidad Adolfo Ibanez, Latin American Institute for Brain Health (BrainLat); Universidad de San Andrés, Cognitive Neuroscience Center (CNC), CONICET; Global Brain Health Institute Lupianez, Juan; University of Granada Faculty of Psychology, Experimental Psychology Barttfeld, Pablo; Universidad Nacional de Córdoba, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología
Keywords:	Attention < Content/Topics, Executive Vigilance, Arousal Vigilance, ERPs < Methods
Abstract:	Attentional networks are regulated by three independent but interacting sub-systems, i.e., alertness and vigilance, orienting, and executive control. While most of the studies analyzing event-related potentials (ERPs) of attentional networks focused on classic attentional functions (i.e., phasic alertness, orienting, and executive control), ERPs associated with vigilance were measured in separated studies and with different behavioral paradigms. The present study aimed at determining ERPs related to attentional and vigilance components of the attentional networks system. Forty participants (34 women, age: M = 25.96; SD = 4.96) completed two experimental sessions wherein electroencephalographic signal was recorded while they completed the Attentional Networks Test for Interactions and Vigilance – executive and arousal components, a behavioral task suitable for measuring the independence and interactions of the classic attentional components as well as the executive (i.e., the ability to detect infrequent critical signals) and arousal (i.e., the capacity to sustain a fast reaction to environmental stimuli) vigilance components. Independent ERPs previously reported for the classic attentional components were replicated here: (a) N1, P2, and contingent negative variation for phasic alertness; (b) P1, N1, and P3 for

1 2	
3 4 5 6 7 8 9 10	orienting; and (c) N2 and slow positivity for executive control. Importantly, vigilance components were associated with different ERPs: while the executive vigilance decrement was associated with an increase in P3 and slow positivity across time-on-task, reduced arousal vigilance was associated with reduced N1 and P2 amplitude. The present study provides novel and high-powered evidence about specific neural mechanisms underlying multiple components of the attentional networks system.
11	
12 13 14 15 16	SCHOLARONE [™] Manuscripts
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	Psychophysiology

Impact statements

This study demonstrates that specific attentional and vigilance ERPs can be simultaneously observed within a single session. Classic attentional components were associated with ERPs involved in early sensory processing, attentional preparation, target anticipation and processing, and conflict detection and resolution. Critically, different ERPs were observed for vigilance components: whereas executive vigilance loss was associated with late ERPs' amplitude increases, reduced arousal vigilance was associated with early ERPs' amplitude decreases.

1 2		-
3 4		
5	1	litte
6 7 8 9	2	Event-related potentials associated with attentional and vigilance components
10 11 12	3	Authors' names and institutional affiliations
13 14	4	Fernando Gabriel Luna ^a , María Julieta Aguirre ^a , Elisa Martín-Arévalo ^b , Agustín
15 16	5	Ibáñez ^{c, d, e} , Juan Lupiáñez ^b , and Pablo Barttfeld ^a
18	6	^a Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-
19 20	7	UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard de la Reforma
21 22	8	esquina Enfermera Gordillo S/N, CP 5000, Córdoba, Argentina.
23 24	9	^b Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center
25 26 27	10	(CIMCYC), University of Granada, Campus de Cartuja S/N, CP 18011, Granada, Spain.
28	11	^c Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago,
29 30 31	12	Chile.
32	13	^d Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos
33 34 35	14	Aires, Argentina.
36 37	15	e Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), US
38 39	16	and Trinity College Dublin (TCD), Ireland.
40 41 42	17	Short title
43 44	18	Attention and vigilance event-related potentials
45 46 47	19	Corresponding author
48 49 50	20	Correspondence concerning this article should be addressed to Fernando G. Luna,
51 52	21	Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología,
53 54 55	22	Universidad Nacional de Córdoba, Boulevard de la Reforma esquina Enfermera Gordillo, CP
56 57	23	5000, Córdoba, Argentina, e-mail: <u>fluna@unc.edu.ar</u> , telephone: (54) (0351) 5353890
58 59 60	24	extension: 60201.

A	hsti	.ac	t
	USU	av	ι

27	Attentional networks are regulated by three independent but interacting sub-systems,
28	i.e., alertness and vigilance, orienting, and executive control. While most of the studies
29	analyzing event-related potentials (ERPs) of attentional networks focused on classic
30	attentional functions (i.e., phasic alertness, orienting, and executive control), ERPs associated
31	with vigilance were measured in separated studies and with different behavioral paradigms.
32	The present study aimed at determining ERPs related to attentional and vigilance components
33	of the attentional networks system. Forty participants (34 women, age: $M = 25.96$; $SD = 4.96$)
34	completed two experimental sessions wherein electroencephalographic signal was recorded
35	while they completed the Attentional Networks Test for Interactions and Vigilance -
36	executive and arousal components, a behavioral task suitable for measuring the independence
37	and interactions of the classic attentional components as well as the executive (i.e., the ability
38	to detect infrequent critical signals) and arousal (i.e., the capacity to sustain a fast reaction to
39	environmental stimuli) vigilance components. Independent ERPs previously reported for the
40	classic attentional components were replicated here: (a) N1, P2, and contingent negative
41	variation for phasic alertness; (b) P1, N1, and P3 for orienting; and (c) N2 and slow positivity
42	for executive control. Importantly, vigilance components were associated with different
43	ERPs: while the executive vigilance decrement was associated with an increase in P3 and
44	slow positivity across time-on-task, reduced arousal vigilance was associated with reduced
45	N1 and P2 amplitude. The present study provides novel and high-powered evidence about
46	specific neural mechanisms underlying multiple components of the attentional networks
47	system.

48	1. Introduction
49	The attentional networks system comprises three relatively independent networks
50	(i.e., alertness and vigilance, orienting, and executive control) that detect, select, and organize
51	internal and external information received to adapt our behavior to the environment (S. E.
52	Petersen & Posner, 2012; Posner & Dehaene, 1994; Posner & Petersen, 1990). Aiming at
53	determining the neural mechanisms underlying attentional components (Posner, 2012; Posner
54	et al., 2006; Raz & Buhle, 2006), there has been considerable interest in examining event-
55	related potentials (ERPs) associated with each of the three attentional networks (Abundis-
56	Gutiérrez et al., 2014; Galvao-Carmona et al., 2014; Gonçalves et al., 2018; Neuhaus et al.,
57	2010; Zani & Proverbio, 2017; Zhang et al., 2018). Importantly, while most of these studies
58	have particularly examined ERPs associated with classic attentional components (i.e., phasic
59	alertness, attentional orienting, and executive control), ERPs associated with vigilance have
60	been studied in relative isolation and via different behavioral methods, i.e., by measuring
61	vigilance either with signal-detection (Boksem et al., 2005; Reteig et al., 2019) or single
62	reaction time (RT) (Hoedlmoser et al., 2011; Ramautar et al., 2013; Witkowski et al., 2015)
63	tasks. In the present study, by combining different methodological approaches used in
64	previous research (Abundis-Gutiérrez et al., 2014; Lara et al., 2018; Ramautar et al., 2013),
65	we examined ERPs in multiple attentional and vigilance components simultaneously
66	observed with the same task, to therefore further determine specific neural mechanisms of
67	attentional networks.
68	Attentional networks-associated ERPs have been previously examined using the
69	attentional networks test (ANT) (Galvao-Carmona et al., 2014; Gonçalves et al., 2018;
70	Neuhaus et al., 2010; Zani & Proverbio, 2017; Zhang et al., 2018) or its variation for
71	measuring the interactions among the networks (ANTI) (Abundis-Gutiérrez et al., 2014). In

short, these tasks present warning signals and visual spatial cues –to assess phasic alertness

and attentional orienting, respectively- which might anticipate the target of a flanker paradigm, thus measuring executive control (Callejas et al., 2004; Fan et al., 2002). ERPs evidence on the alertness and vigilance network –which connects the locus coeruleus with parietal and prefrontal cortices (Fan et al., 2005; Posner, 2008)- has mainly targeted phasic alertness functioning, i.e., brief changes of alertness induced by external warning signals (Posner, 2008). While visual warning cues (i.e., a double asterisk in the ANT) have been shown to increase early perceptual/attentional components such as P1 and N1 (Goncalves et al., 2018; Neuhaus et al., 2010), auditory warning signals (i.e., the alertness tone in the ANTI) also elicit a contingent negative variation (CNV) in central-frontal regions that anticipates the target (Abundis-Gutiérrez et al., 2014). For the orienting network -modulated by activity in sub-cortical (i.e., the superior colliculus and the pulvinar nuclei of the thalamus) and cortical (i.e., the frontal eye fields and the posterior parietal cortex) regions (Fan et al., 2005; Posner, 2016)-, evidence suggests that visual spatial cues modulate P1 and N1 in occipital regions for early target detection (Galvao-Carmona et al., 2014; Gonçalves et al., 2018; Neuhaus et al., 2010). Interestingly, Abundis-Gutiérrez et al. (2014) also observed that invalid spatial cues reorient target localization by increasing P3 amplitude in central-parietal regions compared to valid cues.

Regarding the executive control network –spanning the anterior cingulate and the dorsolateral prefrontal cortex (Botvinick et al., 2004; Fan et al., 2005; Shenhav et al., 2013)-, changes in late ERPs were observed for conflict detection and resolution (Abundis-Gutiérrez et al., 2014; Gonçalves et al., 2018; Neuhaus et al., 2010; Zani & Proverbio, 2017). Some studies reported that P3 modulates distractor inhibition at parietal (Gonçalves et al., 2018) and also frontal (Neuhaus et al., 2010) central regions. Within this network, Abundis-Guitiérrez et al. (2014) dissociated two mechanisms: conflict detection is indexed by an N2 at central-frontal regions, while conflict resolution seems to be associated with a late amplitude

Psychophysiology

Page 7 of 56

Psychophysiology

decrease (i.e., the so-called slow positivity component, SP) at central and parietal areas.
Importantly, previous studies also examined modulations of phasic alertness or attentional
orienting on the executive control network (Abundis-Gutiérrez et al., 2014; Zani &
Proverbio, 2017). While Abundis-Gutiérrez et al. found no modulation of phasic alertness or
attentional orienting over N2 and SP executive control components, Zani & Proverbio (2017)
reported that SP was earlier in the predictive spatial cue condition, showing some benefits of
attentional orienting on conflict resolution.

In studies with the ANT or the ANTI task, vigilance -i.e., the capacity to sustain attention over long periods (Hancock, 2017; Posner, 2008)- is measured indirectly, as the behavioral (Fan et al., 2002; Ishigami & Klein, 2010) and neural (Galvao-Carmona et al., 2014; Zani & Proverbio, 2017) responses in the absence of warning and visual signals. As no direct and independent measure of vigilance is usually obtained with these tasks, determining the neural mechanisms of vigilance within the attentional networks system has been challenging. Moreover, vigilance is not conceived as a unitary concept (Esterman & Rothlein, 2019; Oken et al., 2006; Sarter et al., 2001; Shallice et al., 2008; Sturm & Willmes, 2001; van Schie et al., 2021). Two different components of vigilance have been identified: executive vigilance, as the ability to detect infrequent targets from noise stimuli during long periods, and arousal vigilance, as the capacity to sustain a fast reaction to environmental stimuli without implementing much control on responses (Luna et al., 2018). Vigilance components are usually measured by different behavioral tasks (Luna et al., 2018; Posner, 2008; Roca et al., 2011). While signal-detection tasks such as the Sustained Attention to Response Task (Robertson et al., 1997) particularly measure executive vigilance, single RT tasks such as the Psychomotor Vigilance Test (Lim & Dinges, 2008) measure arousal vigilance.

Previous research measuring vigilance with signal-detection tasks such as the
Sustained Attention to Response Task has found differences in early and late ERPs among

hits on infrequent signals and correct rejections on noise (i.e., the absence of infrequent signal) events, thus showing specific neural responses for categorizing signal and noise stimuli (Karamacoska et al., 2019; McMackin et al., 2020; Reteig et al., 2019). Nonetheless, evidence is both scarce and inconsistent regarding whether the decrease in hits (i.e., the behavioral index of the executive vigilance decrement) is accompanied by a change in ERPs across time-on-task. Although Boksem et al. (2005) observed a general change in N1 and N2 amplitudes across time-on-task, these changes were not specifically associated with hits in their vigilance task. Lara et al. (2018) observed an increase in N1 and a decrease in N2 amplitude as task progressed. However, note that in the study by Lara et al. no decrement in hits across time on task was observed, so changes in ERPs were not accompanied by a decrease in behavioral responses. Interestingly, Bonnefond et al. (2010) observed an increase in a late P1 component (at 550-850 ms) with time-on-task in trials that anticipated an infrequent critical signal, an outcome interpreted as an increase in attentional resources for sustaining an optimal performance during long periods.

In contrast, the vigilance decrement measured with single RT tasks such as the Psychomotor Vigilance Test has been associated with changes in early and late ERPs (Hoedlmoser et al., 2011; Ramautar et al., 2013; Witkowski et al., 2015). Note that, importantly, in previous studies with single RT tasks both behavioral and neural changes were observed across several sessions during a night (Hoedlmoser et al., 2011; Ramautar et al., 2013) or even weeks (Witkowski et al., 2015). In studies where the vigilance decrement was assessed over one night of sleep-deprivation, while Hoedlmoser et al. (2011) observed a decrease in P1 but not N1 at occipital regions, Ramautar et al. (2013) observed a reduced P3 peak-latency at central-parietal locations for sleep-deprived participants in contrast to normal-sleep ones. Interestingly, Witkowski et al. (2015) showed that vigilance impairments during

Psychophysiology

the course of a college semester were accompanied by a decrease in P3 at parieto-occipitalregions when performing the Psychomotor Vigilance Test.

149 1.1. The present study

Given that previous research on ERPs associated with the attentional networks system has not directly measured vigilance performance (Abundis-Gutiérrez et al., 2014; Galvao-Carmona et al., 2014; Gonçalves et al., 2018; Neuhaus et al., 2010; Zani & Proverbio, 2017) and, importantly, since vigilance is not considered a unitary concept (Luna et al., 2018; Oken et al., 2006; Sarter et al., 2001; van Schie et al., 2021) and it is usually measured using different behavioral tasks (Lim & Dinges, 2008; Posner, 2008; Robertson et al., 1997), we decided to conduct the present study. Aiming at further examining ERPs associated with attentional and vigilance components (S. E. Petersen & Posner, 2012; Posner et al., 2006; Posner, 2012), we used the newest and fine-grained version of the ANT, i.e., the Attentional Networks Test for Interactions and Vigilance - executive and arousal components (ANTI-Vea, Luna et al., 2018; for a review on the ANT and its variations, see de Souza Almeida et al., 2021). The ANTI-Vea combines three behavioral tasks within a single session, in particular: (a) the ANTI of Callejas et al. (2004) to assess the independence and interactions of classic attentional components, (b) a signal-detection task similar to the Sustained Attention to Response Task (Robertson et al., 1997), suitable to assess executive vigilance, and (c) a single RT task as the Psychomotor Vigilance Test (Lim & Dinges, 2008) to assess arousal vigilance. Importantly, to increase the electroencephalographic (EEG) signal/noise ratio, we decided to run and collapse two experimental sessions per participant.

168 The ANTI-Vea is suitable to assess the typical main effects and interactions of the 169 classic attentional components while measuring the decrement in executive vigilance –as a 170 progressive drop in hits– and arousal vigilance –as a linear increase in mean and variability of

RT- across time-on-task within a single session (Feltmate et al., 2020; Luna et al., 2018; Luna, Barttfeld, et al., 2021; Román-Caballero et al., 2021), both in the typical lab conditions and outside the lab in an online session (Luna, Roca, et al., 2021). Most importantly, prior studies have shown dissociable mechanisms on executive and arousal vigilance at the neural and physiological levels: while anodal transcranial direct current stimulation over the right fronto-parietal networks mitigated specifically the executive but not the arousal vigilance decrement (Hemmerich et al., 2021; Luna et al., 2020), moderate exercise reduced the executive vigilance decrement and caffeine intake mitigated the arousal vigilance decrement across time-on-task (Sanchis et al., 2020).

We expected to find similar ERPs to those previously observed with similar attentional or vigilance behavioral paradigms in previous studies (see a summary of our predictions in Table 1). In particular, we expected similar ERPs for the independence and interactions of the classic attentional components as in Abundis-Gutiérrez et al. (2014), as we measured phasic alertness, orienting, and executive control using the same ANTI task (Callejas et al., 2004). For vigilance components, we expected to observe different changes in ERPs across time-on-task for executive and arousal vigilance. However, previous evidence about changes in ERPs across time-on-task in signal-detection tasks measuring executive vigilance is inconsistent, as for instance, either a decrease in P3 (Lara et al., 2018) or an increase in late P1 (Bonnefond et al., 2010) have been reported. Unlike our study, single RT tasks capturing arousal vigilance measured ERPs changes in several sessions across hours (Hoedlmoser et al., 2011; Ramautar et al., 2013) or even weeks (Witkowski et al., 2015), showing a decrease in P1 (Hoedlmoser et al., 2011) or P3 (Ramautar et al., 2013; Witkowski et al., 2015). Therefore, and importantly, measuring vigilance with different tasks and in different moments will be affected by unrelated changes in the vigilance state, which makes comparing ERPs' changes difficult. Consequently, an important and crucial aspect of our

Psychophysiology

study is measuring executive and arousal vigilance using the same task within the same
session. Taking all these into account, in the present study, we decided to examine ERPs
associated with executive and arousal vigilance in regions previously examined in vigilance
research. We expect the present study to provide novel and more precise evidence on the
ERPs associated with the attentional networks system (S. E. Petersen & Posner, 2012; Posner
et al., 2006; Posner, 2012).

202	Please, insert Table 1 here.
203	2. Method
204	2.1. Participants
205	Sample size was a-priori estimated based on previous studies with the ANTI-Vea in
206	which the decrement in hits across blocks showed an effect size of $\eta_p^2 = .05$ with 40
207	participants per group (Luna et al., 2018; Luna, Barttfeld, et al., 2021). Using G*Power
208	3.1.9.4 (Faul et al., 2007), power analysis showed that considering $\alpha = .05$ and $1 - \beta = .90$, the
209	minimum sample size required to observe an effect size of $\eta_p^2 = .05$ with two sessions and
210	seven blocks was 35 participants. Given that participants performed more than twice as many
211	trials than in previous studies (two sessions of seven blocks, instead of a single session of six
212	blocks), our study had a much higher power than previous studies (Baker et al., 2021).
213	Therefore, a total of 40 (34 women) healthy adults (age: $M = 25.96$; $SD = 4.96$), who
214	were undergraduate or graduate students from the Universidad Nacional de Córdoba,
215	Argentina, volunteered to participate in the present study. They had normal or corrected to
216	normal vision and none of them had a history of neurological or psychiatric illness. All
217	participants signed an informed consent approved by the local ethics committee. The study

218 was conducted according to the ethical standards of the 1964 Declaration of Helsinki (last

219 update: Seoul, 2008) and was positively evaluated by a local ethics committee (Comité

220 Institucional de Ética de Investigaciones en Salud of the Hospital Nacional de Clínicas,
221 CIEIS HNC, Universidad Nacional de Córdoba, Argentina).

2.2. Behavioral task: ANTI-Vea

The experimental task was designed and controlled with E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). The ANTI-Vea comprises three embedded subtasks: (a) ANTI (60%), a flanker task combined with an auditory warning signal and a visual spatial cueing paradigm suitable to assess the independence and interactions of phasic alertness, orienting, and executive control; (b) executive vigilance (20%), a signal-detection subtask similar to the Sustained Attention to Response Task wherein an infrequent critical signal has to be detected, thus measuring the executive vigilance decrement; and (c) arousal vigilance (20%), a RT subtask similar to the Psychomotor Vigilance Test suitable to assess the arousal vigilance decrement. The stimuli sequence and timing for the trials of each subtask are depicted in Fig. 1 and can be reviewed in detail in previous studies (Luna et al., 2018; Luna, Barttfeld, et al., 2021; Luna, Roca, et al., 2021).

38 234
39
40 235
41

Please, insert Figure 1 here.

Participants were encouraged to fix on the fixation cross at all times. In the ANTI trials, which followed the procedure of the ANTI task (Callejas et al., 2004), a five-arrow horizontal string appeared either above or below the fixation point and participants had to select the direction (i.e., left/right) the central arrow (i.e., the target) pointed to, ignoring the direction pointed by the surrounding flanking arrows (see Fig. 1 panel d). To assess the executive control network, the direction of the target and flanking arrows were congruent in half of these trials and incongruent in the other half. To assess phasic alertness functioning, a tone (i.e., warning signal) could anticipate the target appearance in half of these trials, whereas no tone was presented in the other half (see Fig. 1 panel a). To assess the orienting

Psychophysiology

network, the target's position (i.e., above/below the fixation point) could be preceded either
by a valid (i.e., the same location in 1/3 of ANTI trials), an invalid (i.e., the opposite location
in 1/3 of ANTI trials) spatial visual cue, or by no cue at all in the remaining 1/3 of ANTI
trials (see Fig. 1 panel c). Importantly, note that valid and invalid conditions were
counterbalanced regarding the position of the visual cue on the screen (i.e., above/below the
fixation point).

Executive vigilance trials were similar to the ANTI (see Fig. 1 panel a), except that the target was largely displaced (i.e., 8 pixels -px-) from its central position, either upwards or downwards (see Fig. 1 panel d). Executive vigilance trials mimic signal-detection tasks like Sustained Attention to Response Task: participants were instructed to remain vigilant and to detect the infrequent target's displacement by pressing the space bar, ignoring the direction the target pointed to. Lastly, arousal vigilance trials -which mimic the Psychomotor Vigilance Test- had the same timing than the ANTI and executive vigilance trials but, importantly, no warning signal nor visual cue was presented (i.e., the fixation point remained on the screen) and the response' stimuli of the ANTI/executive vigilance trials was replaced by a millisecond counter (see Fig. 1 panel b). In the arousal vigilance trials, participants had to stop the millisecond counter as fast as possible by pressing any key (see Fig. 1 panel d).

2.3. EEG data acquisition and preprocessing

EEG signal was recorded with a high density 128 channels BioSemi ActiveTwo system, which was controlled with the ActiView software (BioSemi, Amsterdam). Two flattype active-electrodes were placed over the right and left mastoids as additional electrical reference channels. Electrode impedances were kept below 1 Ohm. Signal was registered with a sampling rate of 1024 Hz.

EEG data pre-processing was conducted with EEGLAB v2020.0 toolbox (Delorme & Makeig, 2004) on MATLAB R2016a (The MathWorks, Inc.). Data format was first converted to the EEGLAB format and resampled at 512 Hz. Signals were filtered between 0.5 Hz and 45 Hz. Signal was decomposed into 128 components (i.e., the same number of channels) using Independent Component Analysis. Then, using ADJUST v.1.1.1 (Mognon et al., 2011), artifactual components were automatically classified as horizontal eye movements (M = 3.28; SD = 2.51), vertical eye movements (M = 6.85; SD = 5.35), blinks (M = 3.99; SD)= 3.24), and generic discontinuities (M = 14.85; SD = 8.56), and were removed from signal. We extracted 3400 ms epochs that were visually inspected to interpolate artifactual channels or to reject the entire epoch if it was too noisy (trials rejected by participant in the collapsed two sessions: M = 10.88; SD = 18.13).

278 2.4. Procedure and Design

Participants were first familiarized with the task by performing the online ANTI-Vea version (https://www.ugr.es/~neurocog/ANTI/; Luna, Roca, et al., 2021) at any place of their own choosing. Aiming at gathering a larger amount of within-participant measures of EEG signal, two experimental sessions were completed at the lab (average time between sessions: M = 11.80 days; SD = 15.89). Note that, importantly, the executive and arousal vigilance decrements as well as the main effects and interactions of the classic attentional network functions were observed with the ANTI-Vea in previous research with repeated-measures across several sessions (Sanchis et al., 2020). At the lab, participants received the standard instructions to correctly perform each type of trial and completed one practice block of 40 (24 ANTI, 8 executive vigilance and 8 arousal vigilance) randomly presented trials, without visual feedback. Each experimental session comprised seven experimental blocks without any pause or visual feedback, consisting in 80 (48 ANTI, 16 executive vigilance and 16

Page 15 of 56

Psychophysiology

2		
3 4	291	arousal vigilance) randomly presented trials within each block. The ANTI trials had the
5 6	292	following design: Warning signal (no tone/tone) \times Visual cue (invalid/no cue/valid) \times
7 8	293	Congruency (congruent/incongruent). The 16 executive vigilance trials per block were
9 10 11	294	randomly selected from any possible combination of the ANTI trials design.
12 13		
14 15	295	2.5. Statistical Analyses
16 17 19	296	Data analyses were conducted using RStudio 2021.09.1 Build 372 (RStudio Team,
19 20	297	2021) in R (R Core Team, 2021). Behavioral data figures were done with Matplotlib (Hunter,
21 22	298	2007). EEG data figures were performed using ggplot2 (Wickham, 2016), purrr (Henry &
23 24	299	Wickham, 2020), Rmisc (Hope, 2013), and magrittr (Bache & Wickham, 2020) packages in
25 26 27	300	RStudio for ERPs' plots and MNE-Python code (Gramfort et al., 2013) for topoplots.
28 29 30	301	Analysis of variance (ANOVA) were conducted with the afex package (Singmann et
31 32	302	al., 2021) and planned contrasts were performed with the emmeans package (Lenth, 2021).
33 34	303	Effect sizes and the 95% confidence intervals around them for planned contrasts were
35 36 37	304	computed with the effectsize package (Ben-Shachar et al., 2020).
38 39 40	305	2.5.1. Behavioral data.
41 42	306	Analyses were conducted following the standard analyses of the ANTI-Vea task
43 44 45	307	(Luna, Barttfeld, et al., 2021), as detailed below. Given that three participants did not
46 47	308	complete the second session and one participant was excluded due to an extreme percentage
48 49	309	of errors on the ANTI trials (3 SD above the group mean), the final sample included 36
50 51 52	310	participants (which is indeed a larger sample size than the minimum sample size estimated by
52 53 54	311	power analyses, as detailed above in the 'Participants' section).
55 56 57	312	Main effects and interactions of the classic attentional functions were analyzed in the
58 59	313	ANTI trials. In these trials, those with incorrect responses (3.48 %) or with RT below 200 ms

Page 16 of 56

or above 1500 ms (1.35 %) were excluded from RT analysis. Two repeated-measures ANOVAs were separately conducted, with RT or percentage of errors as dependent variable and including warning signal (no tone/tone), visual cue (invalid/no cue/valid), and congruency (congruent/incongruent) as within-participant factors. In executive vigilance trials, data were collapsed across warning signal, visual cue, and congruency conditions, following the standard analysis of the ANTI-Vea (Luna, Barttfeld, et al., 2021). Overall executive vigilance performance was described as hits (i.e., correct responses) and misses (i.e., incorrect responses) in executive vigilance trials. Following the standard scores computed for the Psychomotor Vigilance Test (Basner & Dinges, 2011), overall arousal vigilance performance was described as fastest and slowest responses in arousal vigilance trials as the first and the fifth quintile on RT, respectively. To avoid including trials with RT equal to 0 ms (i.e., 'no responses') in the first quintile, 'no responses' in AV trials (0.36% of AV trials) were excluded from all arousal vigilance data analyses. Then, to analyze the executive and arousal vigilance decrements across time-ontask, data were computed as a function of blocks of trials. Executive vigilance decrement was analyzed with a repeated-measures ANOVA, with hits as dependent variable and including blocks (seven levels) as a within-participant factor. Arousal vigilance decrement was analyzed with a repeated-measures ANOVA, with mean RT in arousal vigilance trials as dependent variable and blocks (seven levels) as a within-participant factor. Partial eta-squared (η_p^2) and 95% confidence intervals around them (Cumming, 2014) are reported as measure of the ANOVAs' effect size (Kelley & Preacher, 2012). If the sphericity assumption was violated (i.e., Mauchly's test p < .05), degrees of freedom are reported with Greenhouse-Geisser correction. To determine the significance of the linear executive/arousal vigilance decrement across blocks, planned comparisons of the polynomial

60 338 linear component were performed.

Psychophysiology

Page 17 of 56

339

340

1

Psychophysiology

Analyses were separately conducted for attention and vigilance components. ERPs of

15

2	
5	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
~ i つつ	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
21	
24	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
17	
4/	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
50	
55	
bυ	

interest were examined based on previous research on attentional networks and vigilance, as 341 342 detailed below. All analyses were performed on baseline corrected epochs, using the 200 ms 343 signal preceding the locking stimuli as the baseline. Early components (P1, N1, P2, and N2) 344 were analyzed measuring peak amplitude and late components (CNV, P3, and SP) measuring adaptive mean amplitude as dependent variable, respectively. In all ERPs analyses, Cohens' d 345 (for t tests) or partial eta-squared (η_p^2 ; for ANOVAs) are reported as effect size score, with 346 95% confidence intervals around them (Cumming, 2014; Kelley & Preacher, 2012). 347 Independence and interactions among the classical attentional networks components 348 349 were analyzed following the ERPs reported by Abundis-Gutiérrez et al. (2014), who assessed 350 phasic alertness, orienting, and executive control with the ANTI task. Note that ERPs were examined on the same set of trials in which mean correct RT performance was analyzed (see 351 352 above the 'Behavioral data' section for details). Epochs were warning signal-locked (from 200 ms before to 800 ms after) or target-locked (from 200 ms before to 1000 ms after). 353 Independence of attentional networks components was analyzed by means of paired t tests, as 354 follows. For phasic alertness, no tone vs. tone conditions were contrasted for warning signal-355 locked N1 (230-300 ms), P2 (300-400 ms), and CNV (400-600 ms) at Fcz. For the orienting 356 357 network, invalid vs. valid conditions were contrasted for target-locked P1 and N1 (100-230 ms) at the average of Oz, O1, and O2 channels, and P3 (350-650 ms) was analyzed at the 358 average of Pz and CPz channels. Given the short stimuli onset asynchrony (100 ms) between 359 visual cue and target stimuli, we cannot interpret ERPs of interest for the orienting network as 360 changes in EEG signal evoked by the target, especially for P1 and N1 components. 361 Therefore, target-locked contrasts of interest for the orienting network were plotted and 362

window of each ERP of interest (Zani & Proverbio, 2017). For the executive control network, given that the Fcz channel analyzed in Abundis-Gutiérrez et al. showed a high-artifact signal in our data and the N2 component could not be observed in this channel (as well as in the surrounding channels to Fcz), congruent vs. incongruent conditions were contrasted for target-locked N2 (250-400 ms) as closest at possible to Fcz, i.e., at CPz and adjacent channels (i.e., one posterior and one anterior to CPz), and SP (500-800 ms) at Pz. The modulations of phasic alertness (no tone/tone) or orienting (invalid/valid) on the executive control network (congruent/incongruent) were analyzed by separated repeated-measures ANOVAs, for target-locked N2 (250-400 ms) at CPz and adjacent channels and SP (500-800 ms) at Pz. Importantly, as control of the potential effects induced by visual cue stimuli in the orienting and orienting by congruency contrasts, Supplementary Figures 1 and 2 depict EEG signal in the no cue condition along with invalid/valid conditions of cueing. Note that, critically, Supp. Fig. 1 and 2 show a similar baseline for no cue and invalid/valid conditions, and in Supp. Fig. 2, N2 is observed in the same time window for no cue and valid/invalid conditions. ERPs associated with vigilance components were analyzed following two approaches: (a) as a function of overall performance and (b) as a function of performance across time-on-task. To increase the number of trials in analyses of ERPs as a function of time-on-task, first and second blocks and the sixth and seventh blocks were collapsed as the initial and last period, respectively. For executive vigilance, ERPs of overall responses were compared as a function of hits or misses in executive vigilance trials and ERPs across time-on-task were analyzed as a function of hits in the initial and last period of the task. Epochs were target-

locked (from 200 ms before to 1000 ms after) in executive vigilance trials and ERPs were

analyzed by paired t tests in components and channels based on previous research with

387 signal-detection tasks (Bonnefond et al., 2010; Groot et al., 2021; Lara et al., 2018;

388 McMackin et al., 2020; Reteig et al., 2019), in particular: P1 (100-200 ms), N1 (140-230 ms),

Page 19 of 56

Psychophysiology

2		
- 3 4	389	and P3 (350-650 ms) at Pz and SP (500-800 ms) at Cz and adjacent channels. Note that,
5 6	390	given that clear peaks were not observed in P1 and N1 in executive vigilance contrasts, all
7 8 0	391	ERPs in executive vigilance contrasts were analyzed as a function of adaptive mean
9 10 11	392	amplitude (Martín-Arévalo et al., 2015).
12 13 14	393	For arousal vigilance, ERPs of overall responses were compared as a function of the
15 16	394	fastest and slowest RT in arousal vigilance trials (Basner & Dinges, 2011) and ERPs across
17 18 19	395	time-on-task were analyzed as a function of responses in arousal vigilance trials of the first
20 21	396	and the last period of the task. Epochs were target-locked (from 200 ms before to 1000 ms
22 23	397	after) on arousal vigilance trials and ERPs were analyzed by paired t tests in components and
24 25 26	398	channels based on previous research with single RT tasks (Hoedlmoser et al., 2011), in
20 27 28	399	particular: N1 (200-300 ms) and P2 (350-650 ms) in Oz, O1, and O2 channels.
29 30 31 32	400	3. Results
33 34 35	401	3.1. Behavioral performance
36 37 38	402	3.1.1. Phasic alertness, orienting, and executive control
39 40	403	All typical main effects usually observed with the ANTI (Callejas et al., 2004) and
41 42 43	404	ANTI-Vea (Luna et al., 2018; Luna, Roca, et al., 2021) tasks were observed as significant
44 45	405	here (see Fig. 2). For warning signal {RT: [$F(1, 35) = 109.61, p < .001, \eta_p^2 = .76, 95\%$ CI
46 47	406	$(.60, .84)$]; errors: [$F(1, 35) = 15.94, p < .001, \eta_p^2 = .31, (.08, .52)$]}, responses were faster
48 49 50	407	and more precise in the tone than in the no tone condition. The visual cue main effect {RT: $[F]$
51 52	408	$(1.98, 69.27) = 79.22, p < .001, \eta_p^2 = .69, (.57, .77)];$ errors: $[F(1.90, 66.43) = 3.39, p = .042,$
53 54 55	409	$\eta_p^2 = .09, (.00, .23)$ } showed the typical validity {invalid > valid: only for RT [t (35) = 12.12,
55 56 57	410	p < .001, d = 2.05, 95% CI (1.46, 2.63)]; not for errors: [t (35) = -1.67, p = .232, d = -0.28, (-
58 59 60	411	0.62, 0.06)]}, benefits {no cue > valid: RT [t (35) = 7.62, p < .001, d = 1.29, (0.84, 1.73)];

412	although reversed for errors: $[t (35) = -2.60, p = .035, d = -0.44, (-0.78, -0.09)]$ and costs
413	{invalid > no cue: only for RT [$t(35) = 4.91, p < .001, d = 0.83, (0.44, 1.21)$]; not for errors:
414	$[t(35) = 0.73, p = .748, d = 0.12, (-0.21, 0.45)]$ effects. For congruency {only for RT: $[F(1, 0.45)]$
415	35) = 106.85, $p < .001$, $\eta_p^2 = .75$, (.60, .84)]; not for errors: [$F(1, 35) = 0.03$, $p = .853$, $\eta_p^2 < .001$
416	.01, (.00, .09)]}, responses were faster in the congruent than incongruent condition.
417	Please, insert Figure 2 here.
418	The two-way interactions usually observed with the ANTI (Callejas et al., 2004) and
419	the ANTI-Vea (Luna et al., 2018; Luna, Roca, et al., 2021) were observed as significant only
420	for RT as dependent variable (see Table 2): Warning signal × Visual cue {RT: [F (1.87,
421	$(65.43) = 60.27, p < .001, \eta_p^2 = .63, (.49, .73)];$ errors: $[F(1.73, 60.48) = 0.78, p = .445, \eta_p^2 = .445, \eta$
422	.02, (.00, .11)]}, Warning signal × Congruency {RT: [$F(1, 35) = 20.64, p < .001, \eta_p^2 = .37,$
423	$(.13, .57)$]; errors: [$F(1, 35) = 0.90, p = .350, \eta_p^2 = .03, (.00, .20)$]}, and Visual cue ×
424	Congruency {RT: [$F(1.90, 66.34) = 5.33, p = .008, \eta_p^2 = .13, (.01, .28)$]; errors: [$F(1.97, .28)$]
425	$68.86) = 0.26, p = .765, \eta_p^2 < .01, (.00, .07)]\}.$
426	Please, insert Table 2 here.
427	3.1.2. Executive and arousal vigilance.
428	As usually observed with the ANTI-Vea (Luna et al., 2018; Luna, Roca, et al., 2021),
429	the executive vigilance decrement was observed as a significant decrease in hits across blocks
430	$[F(4.64, 162.43) = 9.05, p < .001, \eta_p^2 = .21, (.10, .28)]$ with a significant linear component $[t]$
431	$(35) = -5.14, p < .001, \eta_p^2 = .43, (.22, 1.00)]$ (see Fig. 3). Unexpectedly, however, the arousal
432	vigilance decrement was not observed: the main effect of mean RT across blocks was not
433	significant [$F(3.93, 137.49) = 0.45, p = .769, \eta_p^2 = .01, (.00, .02)$] (see also Fig. 3).
434	Please, insert Figure 3 here.
435	Overall performance of vigilance components is reported in Table 3.

36	Please, insert Table 3 here.
37	3.2. Event-related potentials
38	3.2.1. Phasic alertness, orienting, and executive control
39	ERPs similar to those observed by Abundis-Gutiérrez et al. (2014) were found for the
40	classic attentional networks components. For phasic alertness, significant and relatively large
1	differences were observed between tone and no tone conditions in N1 [t (35) = -8.14, p <
2	.001, $d = -1.36$, $(-1.83, -0.91)$], P2 [$t(35) = 9.07$, $p < .001$, $d = 1.51$, $(1.04, 2.02)$], and CNV [t
;	(35) = -4.91, p < .001, d = -0.82, (-1.21, -0.44)] components for warning-signal locked
ļ	contrasts at FCz (see Fig. 4).
5	Please, insert Figure 4 here.
	For the orienting network, there were no significant differences between cueing
	validity conditions in the time windows of P1 [$t(35) = 0.07$, $p = .941$, $d = -0.01$, (-0.34,
	0.32)] and N1 [t (35) = -1.17, p = .251, d = -0.19, (-0.53, 0.14)] components at occipital
	channels, as depicted by the flat difference wave in Fig. 4. Similarly, no significant
	differences were observed in the time window of P3 component at CPz and Pz, [$t(35) = 1.30$,
	p = .201, d = 0.22, (-0.12, 0.55)], as shown by the flat difference wave between the invalid
	and valid cue conditions in the same Fig 4.
	Lastly, for the executive control network, significant differences were observed
	between congruency conditions in N2 at CPz and adjacent channels [$t(35) = 2.20$, $p = .034$, d
	= 0.37, (0.03, 0.71)] and SP at Pz [$t(35) = 3.27, p = .002, d = 0.54, (0.19, 0.90)$] target-locked
	contrasts (see Fig. 5).
	Please, insert Figure 5 here.
	Bagarding the modulations among the classic attentional naturalize SD at Dz for

(.00, .15)] nor attentional orienting $[F(1, 35) = 0.75, p = .391, \eta_p^2 = .02, (.00, .19)]$ conditions. However, N2 at CPz and adjacent channels for executive control was significantly modulated although only by attentional orienting $[F(1, 35) = 5.80, p = .021, \eta_p^2 = .14, (.00, .36)]$ (see Fig. 5), not by phasic alertness [F(1, 35) = 0.27, p = .604, $\eta_p^2 < .01$, (.00, .15)]. Opposite differences between congruent and incongruent conditions were observed for valid and invalid conditions, although pairwise comparisons showed that no N2 difference was significant: valid cue [t(35)] = -1.94, p = .061, d = -0.33, (-0.67, 0.01) and invalid cue [t (35) = 1.67, p = .104, d = 0.28, (-0.67, 0.01)] 0.06, 0.62].

3.2.2. Executive vigilance.

As can be observed in Fig. 6, contrasts between overall hits and misses showed a significant (although with a relatively small effect size) larger amplitude in P1 in hits than misses, [t (35) = 2.28, p = .029, d = 0.38, (0.04, 0.73)], but there were no significant differences in N1 [t (35) = 0.58, p = .560, d = 0.10, (-0.23, 0.43)] and P3 [t (35) = -0.62, p =.538, d = -0.10, (-0.44, 0.23)] components in Pz. The SP component did not show a significant difference between hits and misses in Cz and adjacent channels, [t (35) = 2.01, p =.052, d = 0.34, (0.00, 0.68)].

Please, insert Figure 6 here.

Importantly, as depicted in Fig. 6, the decrement in hits was accompanied by a significant change in ERPs amplitude across time-on-task. Regarding early ERPs in Pz, analysis on pre-defined time windows showed no significant change in both P1 [t(35) = 1.08, p = .286, d = 0.18, (-0.15, 0.52) and N1 [t(35) = 1.14, p = .258, d = 0.19, (-0.14, 0.53)] amplitude across task periods. However, the pattern depicted in Fig. 6 shows significant differences across task periods in N1. A-posteriori analysis in a narrow time window (180-210 ms) close to N1 peak confirmed a relatively small and significant decrease in N1 amplitude across task period [t(35) = 2.34, p = .025, d = 0.39, (0.05, 0.74)]. In addition,

Psychophysiology

significant increases in both P3 at Pz [t(35) = 2.14, p = .039, d = 0.36, (0.02, 0.70)] and SP at Cz and adjacent channels [t (35) = 3.44, p = .002, d = 0.57, (0.22, 0.94)] were observed between the first and the last period of the task. 3.2.3. Arousal vigilance. Significant differences in ERPs among trials with fastest and slowest arousal vigilance responses were observed in occipital channels of interest (see Fig. 7). In particular, N1 showed a smaller amplitude for the slowest than for the fastest responses, but only in O1 [t (35) = 2.50, p = .017, d = 0.42, (0.07, 0.76); the difference was clearly not significant in Oz [t(35) = 1.68, p = .101, d = 0.28, (-0.06, 0.62)] and O2 [t(35) = 0.64, p = .528, d = 0.11, (-0.06, 0.62)]0.23, 0.44)]. Regarding P2, peak amplitude was significantly smaller for the slowest than for the fastest responses in all occipital channels of interest: O1 [t(35) = -3.57, p = .001, d = -(-0.96, -0.24)], Oz [t (35) = -2.86, p = .007, d = -0.48, (-0.83, -0.13)], and O2 [t (35) = -0.48, (-0.83, -0.13)]. 2.83, p = .008, d = -0.47, (-0.82, -0.13)].Please, insert Figure 7 here. Lastly, for arousal vigilance, no significant changes in ERPs of interest were observed as a function of task period, in agreement with the lack of behavioral arousal vigilance decrement in mean RT. N1 amplitude was not significantly different between the first and last task period in O1 [t(35) = 0.92, p = .364, d = 0.15, (-0.18, 0.49)], Oz [t(35) = 1.63, p =(113, d = 0.27, (-0.06, 0.61)], and O2 [t (35) = 1.62, p = .115, d = 0.27, (-0.07, 0.61)]. Similarly, for P2, no significant changes between the first and last task period were observed in O1 [t(35) = -0.37, p = .714, d = -0.06, (-0.39, 0.27)], Oz [t(35) = -0.63, p = .524, d = -0.64, p = .524, d0.11, (-0.44, 0.22)], and O2 [t (35) = -0.70, p = .488, d = -0.12, (-0.45, 0.21)].

1 2 3 4 5	507	4. Discussion
6 7	508	The present study aimed at further examining the ERPs associated with the attentio
8 9 10	509	networks system (S. E. Petersen & Posner, 2012; Posner et al., 2006; Posner, 2012; Posner
11 12	510	Petersen, 1990). Most of the previous studies on ERPs with attentional networks tasks like
13 14 15	511	the ANT or the ANTI focused on phasic alertness, attentional orienting, and executive con
15 16 17	512	functions (Abundis-Gutiérrez et al., 2014; Galvao-Carmona et al., 2014; Gonçalves et al.,
18 19	513	2018; Neuhaus et al., 2010; Zani & Proverbio, 2017). In contrast, ERPs associated with
20 21 22	514	vigilance components have been observed using different paradigms, by measuring vigilar
22 23 24	515	via signal-detection (Bonnefond et al., 2010; Lara et al., 2018; Reteig et al., 2019) or RT
25 26	516	(Hoedlmoser et al., 2011; Ramautar et al., 2013; Witkowski et al., 2015) tasks. Therefore,
27 28	517	critically, ERPs associated with vigilance components were previously measured in different
29 30 31	518	contexts and with different task sets, with participants likely in different attentional states.
32 33	519	the present study, importantly, attentional and vigilance ERPs were simultaneously examine
34 35	520	using the newest version of the ANT, the ANTI-Vea (Luna et al., 2018). This task assesses
36 37 38	521	the independence and interactions of the classic attentional networks components while
30 39 40	522	measuring the executive and arousal vigilance decrements across time-on-task. Thus, by
41 42	523	measuring high-density EEG signal while participants completed the ANTI-Vea in two
43 44	524	repeated sessions, we reported critical evidence about ERPs associated with the classic
45 46 47	525	attentional components and for executive and arousal vigilance, when both components are
48 49 50	526	measured under the same context and attentional state of participants.
50 51 52	527	ERPs previously observed by Abundis-Gutiérrez et al. (2014) for the classic
53 54	528	attentional components were replicated in the present study. For phasic alertness, warning
55 56	529	signal reduced RT and elicited early attentional preparation ERPs as N1 and P2 (Jonkman,

58 59 60

4. Discussion

signal reduced RT and elicited early attentional preparation ERPs as N1 and P2 (Jonkman, 529

2006) as well as CNV as an anticipatory component to the target in central-frontal regions 530 531 (Abundis-Gutiérrez et al., 2014). It should be noted that N1 and P2 might be more associated Page 25 of 56

Psychophysiology

with the salience of the auditory tone than with changes in the phasic alertness state. However, and importantly, the CNV has been proposed as a marker of readiness for an incoming target, a component elicited both by visual (Galvao Carmona et al., 2014) and auditory (Abundis-Gutiérrez et al., 2014) warning signals. Galvao-Carmona et al. (2014) observed that CNV's amplitude increases as a function of the information provided by the anticipatory signal. Using a modified version of the ANT, Galvao-Carmona et al. observed that CNV was larger when the target was anticipated by a 100% predictive visual spatial cue -for measuring attentional orienting- than by a not predictive visual central cue -for measuring phasic alertness-. Note that, however, in Galvao-Carmona et al. the stimuli onset asynchrony between visual cues and the target was larger (1000 ms) than in the present study (500 ms between tone and target), which could increase preparation for response stimuli in both visual cue conditions. Moreover, it has been proposed that while auditory signals are more effective than visual cues to increase phasic alertness (Fernandez-Duque & Posner, 1997; A. Petersen et al., 2017), cueing validity paradigms are more effective than 100% predictive cues for measuring orienting (Posner, 2016). Thus, as observed in the present study, probably the CNV is probably more associated with phasic alertness changes elicited by warning signals (either informative or not) that increase temporal preparation for target incoming (Pauletti et al., 2014) than with orienting mechanisms anticipating target localization (Galvao-Carmona et al., 2014).

Regarding the orienting network, visual spatial cues did not modulate early sensory
processing in occipital regions, showing a similar signal for valid and invalid conditions in
time window for P1 and N1 components. Previous studies with the ANT have shown
increased target-locked N1 when spatial cues are 100% predictive about target localization
(Gonçalves et al., 2018; Neuhaus et al., 2010). It has been reported that when exogenous cues
reorient attention to lateralized targets, cueing validity modulates P1 and N1 (Fu et al., 2001,

2005; Talsma et al., 2007). In the present study, however, exogenous cues anticipated target localization at central positions (up/down), which might have reduced validity effects in early perceptual target detection, as documented in Abundis-Gutiérrez et al. (2014). Note that cueing validity neither modulated late target processing in central-parietal regions, as signal was similar in the time window for P3 in invalid and valid cueing conditions (Correa et al., 2006; Randall & Smith, 2011; Talsma et al., 2007). Previous research has observed an increase in P3 after invalid cueing, which has been explained as the cost of disengaging and reorienting attention (Abundis-Gutiérrez et al., 2014), as well as a mechanism for inhibiting the representation of a planned movement and activating a newly demanded response (Randall & Smith, 2011). Importantly, it must be noted that, in the ANTI-Vea, the stimulus onset asynchrony

between visual cues and target is relatively short (100 ms), which limits the interpretation about ERPs associated with the orienting effect as changes evoked by the target stimuli. Considering this limitation, ERPs associated with the orienting network were not interpreted as evoked by the target stimuli and were instead discussed as signal modulation by the validity condition in the time window of each ERP of interest. Note that, however, the effect of visual cue on ERPs of interest seems to be relatively small, as demonstrated by the similar baseline between no cue and invalid/valid conditions observed in Supp. Fig. 1 and 2. Future ERP' studies with the ANTI-Vea should consider this critical aspect of the task when interpreting outcomes associated with cueing validity.

577 For the executive control network, flankers' interference reduced N2 and increased SP 578 amplitudes, as reported in Abundis-Gutiérrez et al. (2014). Although previous studies with 579 the ANT observed P3 as a cognitive control component involved in late target processing 580 (Galvao-Carmona et al., 2014; Gonçalves et al., 2018; Neuhaus et al., 2010), Abundis-581 Gutiérrez et al. proposed the N2 component for conflict detection and the SP component for Page 27 of 56

Psychophysiology

post-conflict resolution as executive control mechanisms. Previous research has extensively associated N2 with conflict detection and response inhibition mechanisms (Folstein & Van Petten, 2008; Swainson et al., 2003). Indeed, while some visual paradigms might elicit N2 in the posterior scalp –as in the present study–, auditory paradigms seem to especially evoke N2 in rather frontal scalp, having as source region the anterior cingulate cortex (Folstein & Van Petten, 2008), i.e., a cortex strongly associated with conflict detection (Botvinick et al., 2001, 2004; Yeung et al., 2004). Further research supports N2 as a key component in executive control: while increased N2 latency and reduced N2 amplitude were associated with cognitive control loss across aging (Kropotov et al., 2016), transcutaneous vagus nerve stimulation has shown to improve sequential conflict adaptation by reducing N2 amplitude (Fischer et al., 2018). Regarding SP, also known as error positivity, evidence suggests that this component appears 200-400 ms after responses and that it is associated with error resolution independently of conflict and stimuli modality (West, 2003; West & Moore, 2005). The increase in SP was associated with error commission awareness in cognitive control tasks (Endrass et al., 2012) as well as cognitive control decline across aging (Larson et al., 2016). Altogether, the present and previous findings support N2 and SP as two key components of the executive control network (Posner, 2012; Posner et al., 2006). Importantly, contrary to Abundis-Gutiérrez et al. (2014), executive control N2 component was modulated by the orienting network. Previous research has shown that N2 is likely to be modulated by temporal orienting of attention, as invalid cues increase N2 amplitude impairing conflict detection (Correa et al., 2006). In our study, the N2 effect (i.e., more negative for incongruent than congruent) was only observed for invalid trials, being reversed for valid ones, although pairwise comparisons showed that no effect reached significance, limiting the interpretation of this outcome. In a study conducted with the ANT, Zani & Proverbio (2017) observed modulations of attentional orienting over SP component of

the executive control network. Nevertheless, as previously discussed, while in the ANT the spatial cue is 100% predictive about target localization, the cueing validity paradigm embedded in the ANTI and ANTI-Vea has benefits and cost effects in target localization beyond the automatic orienting of attention (Callejas et al., 2004, 2005; Posner, 2016). Notably, although the attentional networks model anticipates neural interactions among the networks (S. E. Petersen & Posner, 2012; Posner & Petersen, 1990), in the present study N2 modulation by the orienting network was the only interaction observed. While the present outcomes do not fully support the attentional networks interactions usually derived from behavioral data, it should be noted that evidence on ERPs with the ANTI task -which combines auditory warning signal and cueing validity paradigm anticipating response' stimuli- is still considerably scarce. Further research is, therefore, necessary to better understand potential interactions among classic attentional functions in ERPs components. Regarding vigilance components, different ERPs were observed in the same task period for executive and arousal vigilance. To the best of our knowledge, this is the first study in analyzing ERPs associated with executive and arousal vigilance with independent measures and within a single session. Previously, Galvao-Carmona et al. (2014) observed in the no cue condition of the ANT a slow CNV prior to the target, which was interpreted as a general level of tonic alerting. Notwithstanding, the no cue condition in the ANT is not a direct measure of vigilance (Ishigami & Klein, 2010; Roca et al., 2011), which limits the

analysis of a clear ERP associated with vigilance functioning. Instead, in the ANTI-Vea, both executive vigilance -measured in the signal-detection subtask- and arousal vigilance -measured in the RT subtask- are independently assessed (Luna et al., 2018; Luna, Barttfeld,

et al., 2021; Luna, Roca, et al., 2021). Although the hits/misses rate and hits decrease across time-on-task for executive vigilance were similar to previous studies with the ANTI-Vea, the

arousal vigilance decrement in mean RT was not observed here (Luna, Roca, et al., 2021). A

Psychophysiology

Page 29 of 56

Psychophysiology

similar pattern was previously found in Luna et al. (2020), wherein participants completed the ANTI-Vea while anodal/sham transcranial direct current stimulation was delivered and EEG signal was recorded. Indeed, although we did not plan to analyze ERPs of arousal vigilance as a function of RT variability, in the present study the arousal vigilance decrement was also not observed for SD of RT across blocks, [F (1, 35) = 0.60, p = .658, η_p^2 = .02, (.00, .03)]. Although the absence of behavioral arousal vigilance decrement could be a limitation for analyzing ERPs associated with changes across time-on-task in this component, we observed other typical measures for arousal vigilance that are usually reported in single RT tasks, i.e., as the fastest and slowest RT (Basner & Dinges, 2011; Molina et al., 2019). Therefore, in summary, in the present study executive and arousal vigilance could be independently measured while assessing the classic attentional networks with the ANTI-Vea (Luna et al., 2018).

Similar ERPs as those reported in previous studies with signal-detection tasks were observed for executive vigilance (Boksem et al., 2005; Bonnefond et al., 2010; Lara et al., 2018; Reteig et al., 2019). Early sensory processing components showed larger P1 amplitude for hits than misses, which might be associated with the correct visual detection of infrequent targets in the behavioral responses (Reteig et al., 2019). Previous studies have also observed P1 as a component associated with correct detection of infrequent targets (Boksem et al., 2005; Groot et al., 2021). Most importantly, the executive vigilance decrement in hits was accompanied with a decrease in N1 and an increase in late ERPs amplitude, i.e., P3 and SP, across time-on-task. Previous evidence was scarce and inconsistent regarding ERPs associated with the executive vigilance decrement in signal-detection tasks, as either increased (Lara et al., 2018), decreased (Boksem et al., 2005), or similar (Reteig et al., 2019) N1 across time-on-task has been reported. Moreover, for late ERPs, while in Lara et al. (2018) P3 decreased across time-on-task, Bonnefond et al. (2010) found instead late P1

Psychophysiology

increase across blocks. As commented by Abundis-Gutiérrez et al. (2014), the fact that SP has been observed either before, during, or after the motor response might indicates that this component is associated with post-target processing rather than with motor preparation. Late ERPs changes across time-on-task have received opposite interpretations by attentional resources theories: while amplitude decrease was proposed as a marker of resource depletion with time-on-task (Lara et al., 2018; Warm et al., 2008), amplitude increase was instead discussed as an increase in effort to keep resource allocation on the external task (Bonnefond et al., 2010; Koelega et al., 1992).

Nowadays, there is an open debate regarding what 'attentional resources' are at the neural level and which neural markers might be indicating a change in resources disposition as a function of time-on-task (Neigel et al., 2020; Thomson et al., 2016). Although the present outcomes follow those observed by Bonnefond et al. (2011), we recognize that further research is still necessary to elucidate whether P3 and SP increase across time-on-task can be associated to an increase in both effort and resources allocation in the external task with time-on-task in executive vigilance. To further understand the implications of neural changes in the vigilance decrement phenomenon, future research should also examine whether changes in ERPs across time-on-task can be associated with changes in sensitivity and/or response bias (Mazzi et al., 2020). In the present study, the decrease in hits was accompanied by a decrease in false alarms [F (3.37, 117.82) = 3.90, p = .008, $\eta_p^2 = .10$, (.02, .16)], which led to a loss in sensitivity [$F(4.51, 157.91) = 3.47, p = .007, \eta_p^2 = .09, (.01, .15)$] as well as a change in response bias towards a more conservative criterion [F(4.10, 143.49) =5.69, p < .001, $\eta_p^2 = .14$, (.05, .21)]. Future studies aiming at determining ERPs specifically associated with sensitivity or response bias might modulate response bias by instructing participants towards a more conservative criterion, as in Mazzi et al. (2020), or reduce the perceptual salience of the infrequent target to modulate the loss in sensitivity.

Page 31 of 56

Psychophysiology

Lastly, for arousal vigilance, while no significant change across time-on-task was observed in mean RT and early ERPs, N1 and P2 in occipital channels were larger for fastest than slowest arousal vigilance responses. Fastest and slowest RT are two of the most used scores to assess arousal vigilance states with the Psychomotor Vigilance Test (Basner & Dinges, 2011). Previous researches have demonstrated that BOLD signal (Drummond et al., 2005) and theta, alpha, and beta power (Molina et al., 2019) also change as a function of the speed of responses in the Psychomotor Vigilance Test. Importantly, the present outcomes are in the same vein as those observed by Hoedlmoser et al. (2011), who observed a decrease in early ERPs amplitude after a night of sleep deprivation and measured arousal vigilance with the Psychomotor Vigilance Test. Compared to this study, ERPs reported in Hoedlmoser et al. were closer to target onset, probably because the millisecond counter was the only stimuli expected, while in the present study participants were completing three simultaneous subtasks, all with different target stimuli. While previous research found ERPs changes associated with arousal vigilance loss in repeated sessions during a night (Hoedlmoser et al., 2011; Ramautar et al., 2013) or even weeks (Witkowski et al., 2015), we observed ERPs changes related to arousal vigilance loss (i.e., fastest vs. slowest responses) within a single session of ~32 min.

Interestingly, different ERPs changes were observed for executive and arousal vigilance. While the executive vigilance decrement seems to be more associated with amplitude increase in late ERPs (i.e., P3 and SP), arousal vigilance loss was particularly related to amplitude decrease in early ERPs (i.e., N1 and P2). Altogether, the present outcomes provide novel and further evidence on the different neural basis of vigilance components (Luna et al., 2020; Sanchis et al., 2020), further supporting executive and arousal vigilance as two independent components of the attentional networks system (S. E. Petersen & Posner, 2012; Posner & Petersen, 1990).

2
3
4
5
6
7
8
o o
9 10
10
11
12
13
14
15
16
17
17
10
19
20
21
22
23
24
24
25
26
27
28
29
30
31
27
22
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
17
47
4ð
49
50
51
52
53
54
54
55
50
57
58

59 60

1

707 To conclude, the present study provides novel and critical evidence showing that ERPs associated with attentional and vigilance components can be simultaneously observed 708 within a single session, supporting different functional neural mechanisms underlying the 709 attentional networks system (S. E. Petersen & Posner, 2012). Regarding the classic 710 attentional functions, similar ERPs to those previously observed by Abundis-Gutiérrez et al. 711 (2014) were found here, in particular: (a) for phasic alertness, warning signal elicited early 712 713 attentional preparation N1 and P2 components as well as CNV as an anticipatory mechanism to target; (b) for the orienting network, cueing validity did not modulate P1 and N1 early 714 715 sensory processing components and, at difference to Abundis-Guitiérrez et al., cueing validity did not modulate P3 target processing component; (c) for the executive control network, 716 congruency modulated conflict detection in N2 as well as conflict resolution in SP 717 components. Importantly, different ERPs were simultaneously observed for executive and 718 719 arousal vigilance. Whereas the executive vigilance decrement was accompanied by an increase in late ERPs (i.e., P3 and SP) amplitude, reduced arousal vigilance was associated 720 with a decrease in early ERPs (i.e., N1 and P2) amplitude. Altogether, the present study 721 provides novel and high-powered evidence about specific ERPs associated with multiple 722 attentional and vigilance components of the attentional networks system (S. E. Petersen & 723 Posner, 2012; Posner, 2012; Posner et al., 2006; Posner & Petersen, 1990). 724

2 3 4 5	725	References
6 7	726	Abundis-Gutiérrez, A., Checa, P., Castellanos, C., & Rosario Rueda, M. (2014).
8 9	727	Electrophysiological correlates of attention networks in childhood and early adulthood.
10	728	Neuropsychologia, 57(1), 78–92.
11	729	https://doi.org/10.1016/j.neuropsychologia.2014.02.013
12 13 14	730 731	Bache, S. M., & Wickham, H. (2020). <i>magrittr: A Forward-Pipe Operator for R</i> (R package version 2.0.1). https://cran.r-project.org/package=magrittr
15		
16 17	732	Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., &
18	733	Andrews, T. J. (2021). Power contours: Optimising sample size and precision in
19	734	experimental psychology and human neuroscience. Psychological Methods, 26(3), 295-
20 21	735	314. https://doi.org/10.1037/met0000337
22 22 23	736 727	Basner, M., & Dinges, D. F. (2011). Maximizing sensitivity of the psychomotor vigilance test
24 25	/3/	(P V 1) to steep loss. <i>steep</i> , <i>54</i> (5), <i>581–591</i> . https://doi.org/10.1095/steep/54.5.581
25 26	738	Ben-Shachar, M., Lüdecke, D., & Makowski, D. (2020). effectsize: Estimation of Effect Size
27	739	Indices and Standardized Parameters. Journal of Open Source Software, 5(56), 2815.
28 29	740	https://doi.org/10.21105/joss.02815
30 31	741	Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental fatigue on
32	742	attention: An ERP study. Cognitive Brain Research, 25(1), 107–116.
33 34	743	https://doi.org/10.1016/j.cogbrainres.2005.04.011
35	744	Bonnefond, A., Doignon-Camus, N., Touzalin-Chretien, P., & Dufour, A. (2010). Vigilance
30 37	745	and intrinsic maintenance of alert state: An ERP study. Behavioural Brain Research,
38 39	746	<i>211</i> (2), 185–190. https://doi.org/10.1016/j.bbr.2010.03.030
40	747	Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict
41 42	748	Monitoring and Cognitive Control. <i>Pyschological Review</i> , 108(3), 624–652.
42 43	749	https://doi.org/10.1037//0033-295X.108.3.624
44 45	750	Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior
46	751	cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539-546.
47 48	752	https://doi.org/10.1016/j.tics.2004.10.003
49	753	Callejas, A., Lupiáñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting,
50 51	754	orienting and executive control networks. Experimental Brain Research, 167(1), 27-37.
52 53	755	https://doi.org/10.1007/s00221-005-2365-z
54	756	Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The three attentional networks: on their
55 56	757	independence and interactions. Brain and Cognition, 54(3), 225-227.
56 57 58 59	758	https://doi.org/10.1016/j.bandc.2004.02.012
60		

1		
2		
3	759	Correa, Á., Lupiáñez, J., Madrid, E., & Tudela, P. (2006). Temporal attention enhances early
4 5	760	visual processing: A review and new evidence from event-related potentials. Brain
6 7	761	Research, 1076(1), 116-128. https://doi.org/10.1016/j.brainres.2005.11.074
8	762	Cumming, G. (2014). The New Statistics: Why and How. <i>Psychological Science</i> , 25(1), 7–
9	763	29. https://doi.org/10.1177/0956797613504966
10		
12	764	de Souza Almeida, R., Faria-Jr, A., & Klein, R. M. (2021). On the origins and evolution of
13	765	the Attention Network Tests. Neuroscience & Biobehavioral Reviews, 126(March), 560-
14	766	572. https://doi.org/10.1016/j.neubiorev.2021.02.028
15 16	767	Delorme A & Makeig S (2004) FEGLAB: an open source toolbox for analysis of single
17	707	trial EEC dynamics including independent companyation analysis of single-
18	/68	trial EEG dynamics including independent component analysis. <i>Journal of Neuroscience</i>
19 20	769	<i>Methods</i> , 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
20	770	Drummond, S. P. A, Bischoff-Grethe, A., Dinges, D. F., Ayalon, L., Mednick, S. C., &
22	771	Meloy, M. J. (2005). The neural basis of the psychomotor vigilance task. <i>Sleep</i> , 28(9),
23	772	1059–1068 https://doi.org/10.1093/sleep/28.9.1059
24 25	<i>,,,</i> _	1009 1000. https://doi.org/10.1090/bioop/2009.1009
26	773	Endrass, T., Klawohn, J., Preuss, J., & Kathmann, N. (2012). Temporospatial dissociation of
27	774	Pe subcomponents for perceived and unperceived errors. Frontiers in Human
28	775	Neuroscience, 6(JUNE 2012), 1-10. https://doi.org/10.3389/fnhum.2012.00178
30	776	Esterman M & Rothlein D (2019) Models of sustained attention Current Opinion in
31	770	Psychology 20, 174–180, https://doi.org/10.1016/i.consyc.2019.03.005
32 33	,,,	<i>T sychology</i> , <i>27</i> , 174–160. https://doi.org/10.1010/j.copsyc.2017.05.005
34	778	Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The
35	779	activation of attentional networks. NeuroImage, 26(2), 471-479.
36 27	780	https://doi.org/10.1016/j.neuroimage.2005.02.004
37 38	701	For I. McCondling D. D. Sommer T. Dog A. & Degner M. I. (2002). Testing the
39	701	Fail, J., McCalidinss, B. D., Solillier, T., Kaz, A., & Foslier, M. I. (2002). Testing the
40	/82	efficiency and independence of attentional networks. <i>Journal of Cognitive</i>
41 42	783	<i>Neuroscience</i> , <i>14</i> (3), 340–347. https://doi.org/10.1162/089892902317361886
43	784	Faul, F., Erdfelder, E., Lang, AG., & Buchner, A. (2007). G*Power 3: A flexible statistical
44	785	power analysis program for the social, behavioral, and biomedical sciences. <i>Behavior</i>
45 46	786	Research Methods, 39(2), 175–191, https://doi.org/10.3758/BF03193146
47		=
48	787	Feltmate, B. B. T., Hurst, A. J., & Klein, R. M. (2020). Effects of fatigue on attention and
49 50	788	vigilance as measured with a modified attention network test. Experimental Brain
51	789	Research, 238(11), 2507–2519. https://doi.org/10.1007/s00221-020-05902-y
52	790	Fernandez-Duque, D., & Posner, M. I. (1997) Relating the mechanisms of orienting and
53 54	791	alerting Neuronsychologia 35(4) 477–486 https://doi.org/10.1016/S0028-
55	707	3932(96)00103_0
56	i JZ	5752(70)00105-0
57 59	793	Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018). Transcutaneous vagus
50 59	794	nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control.
60		

Page 35 of 56

1

Psychophysiology

1	\mathbf{a}
- 4	-
2	2

2		
3 4 5	795 796	<i>Cognitive, Affective, & Behavioral Neuroscience, 18</i> (4), 680–693. https://doi.org/10.3758/s13415-018-0596-2
6 7	797	Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the
8	798	N2 component of the ERP. A review <i>Psychophysiology</i> 45(1) 152–170
9	700	https://doi.org/10.1111/j.1/69-8986.2007.00602.v
10	199	hups.//doi.org/10.1111/j.1409-0980.2007.00002.X
11	800	Fu, S., Fan, S., Chen, L., & Zhuo, Y. (2001). The attentional effects of peripheral cueing as
12 13	801	revealed by two event-related potential studies. <i>Clinical Neurophysiology</i> , 112(1), 172–
14	802	185 https://doi.org/10.1016/\$1388-2457(00)00500-9
15	002	105. https://doi.org/10.1010/01500/2/15/(00)00500/9
16	803	Fu, S., Greenwood, P. M., & Parasuraman, R. (2005). Brain mechanisms of involuntary
1/ 10	804	visuospatial attention: An event-related potential study. Human Brain Mapping, 25(4),
19	805	378–390. https://doi.org/10.1002/hbm.20108
20		
21	806	Galvao-Carmona, A., González-Rosa, J. J., Hidalgo-Muñoz, A. R., Páramo, D., Benítez, M.
22 22	807	L., Izquierdo, G., & Vázquez-Marrufo, M. (2014). Disentangling the attention network
23	808	test: behavioral, event related potentials, and neural source analyses. Frontiers in Human
25	809	Neuroscience, 8(813), 1–16. https://doi.org/10.3389/fnhum.2014.00813
26		
27 20	810	Gonçalves, O. F., Rego, G., Conde, I., Leite, J., Carvalho, S., Lapenta, O. M., & Boggio, P.
20 29	811	S. (2018). Mind Wandering and Task-Focused Attention: ERP Correlates. <i>Scientific</i>
30 31	812	<i>Reports</i> , 8(1), 7608. https://doi.org/10.1038/s41598-018-26028-w
32	813	Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj,
33	814	R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. S. (2013). MEG and EEG
34 25	815	data analysis with MNE-Python. Frontiers in Neuroscience, 7(267), 1-13.
35 36	816	https://doi.org/10.3389/fnins.2013.00267
37		
38	817	Groot, J. M., Boayue, N. M., Csifcsák, G., Boekel, W., Huster, R., Forstmann, B. U., &
39	818	Mittner, M. (2021). Probing the neural signature of mind wandering with simultaneous
40 41	819	fMRI-EEG and pupillometry. NeuroImage, 224(June 2020), 117412.
42	820	https://doi.org/10.1016/j.neuroimage.2020.117412
43		
44	821	Hancock, P. A. (2017). On the Nature of Vigilance. <i>Human Factors</i> , 59(1), 35–43.
45 46	822	https://doi.org/10.1177/0018720816655240
47	873	Hemmerich K. Luna F. G. Luniáñez, I. & Martín-Arévalo, F. (2021) Dissociated
48	025	Nouromodulatom Efforts And EEC Activity For The Executive And Anougal Visilance
49	824	Neuromodulalory Effects And LEG Activity For The Executive And Arousal Vigilance
50 51	825	Components. Jornadas Virtuales SEPEX 2021.
52	826	Henry, L., & Wickham, H. (2020). <i>purr: Functional Programming Tools</i> (R package version
53	827	0.3.4) https://cran r-project.org/package=purr
54	027	0.5. 1). https://erun.i project.org/puckuge pulli
55 56	828	Hoedlmoser, K., Griessenberger, H., Fellinger, R., Freunberger, R., Klimesch, W., Gruber,
50 57	829	W., & Schabus, M. (2011). Event-related activity and phase locking during a
58	830	psychomotor vigilance task over the course of sleep deprivation. Journal of Sleep
59	831	<i>Research</i> , 20(3), 377–385, https://doi.org/10.1111/j.1365-2869 2010 00892 x
60		······································

1		
2 3 4 5	832 833	Hope, R. M. (2013). <i>Rmisc: Ryan Miscellaneous</i> (R package version 1.5). https://cran.r-project.org/package=Rmisc
6 7 8	834 835	Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. <i>Computing In Science & Engineering</i> , <i>9</i> (3), 90–95. https://doi.org/10.1109/MCSE.2007.55
9 10 11 12 13 14 15	836 837 838 839	Ishigami, Y., & Klein, R. M. (2010). Repeated measurement of the components of attention using two versions of the Attention Network Test (ANT): stability, isolability, robustness, and reliability. <i>Journal of Neuroscience Methods</i> , <i>190</i> (1), 117–128. https://doi.org/10.1016/j.jneumeth.2010.04.019
16 17 18 19	840 841 842	Jonkman, L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood; a Go/Nogo ERP study. <i>Brain Research</i> , <i>1097</i> (1), 181–193. https://doi.org/10.1016/j.brainres.2006.04.064
20 21 22 23 24 25	843 844 845 846	 Karamacoska, D., Barry, R. J., De Blasio, F. M., & Steiner, G. Z. (2019). EEG-ERP dynamics in a visual Continuous Performance Test. <i>International Journal of Psychophysiology</i>, <i>146</i>(August), 249–260. https://doi.org/10.1016/j.ijpsycho.2019.08.013
26 27 28 29	847 848	Kelley, K., & Preacher, K. J. (2012). On effect size. <i>Psychological Methods</i> , <i>17</i> (2), 137–152. https://doi.org/10.1037/a0028086
30 31 32 33 34 35	849 850 851 852	 Koelega, H. S., Verbaten, M. N., van Leeuwen, T. H., Kenemans, J. L., Kemner, C., & Sjouw, W. (1992). Time effects on event-related brain potentials and vigilance performance. <i>Biological Psychology</i>, <i>34</i>(1), 59–86. https://doi.org/10.1016/0301-0511(92)90024-O
36 37 38 39	853 854 855	Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Müller, A., & Jäncke, L. (2016). Effect of aging on ERP components of cognitive control. <i>Frontiers in Aging Neuroscience</i> , 8(APR), 1–15. https://doi.org/10.3389/fnagi.2016.00069
40 41 42 43 44	856 857 858	Lara, T., Molina, E., Madrid, J. A., & Correa, Á. (2018). Electroencephalographic and skin temperature indices of vigilance and inhibitory control. <i>Psicológica</i> , 39(2), 223–260. https://doi.org/10.2478/psicolj-2018-0010
45 46 47 48 49 50 51 52	859 860 861 862 863	 Larson, M. J., Clayson, P. E., Keith, C. M., Hunt, I. J., Hedges, D. W., Nielsen, B. L., & Call, V. R. A. (2016). Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age. <i>Biological Psychology</i>, <i>115</i>, 50–63. https://doi.org/10.1016/j.biopsycho.2016.01.008
53 54 55	864 865	Lenth, R. (2021). <i>emmeans: Estimated Marginal Means, aka Least-Squares Means</i> (R package version 1.7.0). https://cran.r-project.org/package=emmeans
56 57 58 59 60	866 867	Lim, J., & Dinges, D. F. (2008). Sleep Deprivation and Vigilant Attention. Annals of the New York Academy of Sciences, 1129(1), 305–322. https://doi.org/10.1196/annals.1417.002

1		
2 3 4 5 6 7 8	868 869 870 871	Luna, F. G., Barttfeld, P., Martín-Arévalo, E., & Lupiáñez, J. (2021). The ANTI-Vea task: analyzing the executive and arousal vigilance decrements while measuring the three attentional networks. <i>Psicológica</i> , 42(1), 1–26. https://doi.org/10.2478/psicolj-2021- 0001
9 10 11 12 13	872 873 874	Luna, F. G., Marino, J., Roca, J., & Lupiáñez, J. (2018). Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task. <i>Journal of</i> <i>Neuroscience Methods</i> , 306, 77–87. https://doi.org/10.1016/j.jneumeth.2018.05.011
14 15 16 17 18 19	875 876 877 878	Luna, F. G., Roca, J., Martín-Arévalo, E., & Lupiáñez, J. (2021). Measuring attention and vigilance in the laboratory vs. online: The split-half reliability of the ANTI-Vea. <i>Behavior Research Methods</i> , 53(3), 1124–1147. https://doi.org/10.3758/s13428-020- 01483-4
20 21 22 23 24 25	879 880 881 882	Luna, F. G., Román-Caballero, R., Barttfeld, P., Lupiáñez, J., & Martín-Arévalo, E. (2020). A High-Definition tDCS and EEG study on attention and vigilance: Brain stimulation mitigates the executive but not the arousal vigilance decrement. <i>Neuropsychologia</i> , 142, 107447. https://doi.org/10.1016/j.neuropsychologia.2020.107447
26 27 28 29 30 31	883 884 885 886	Martín-Arévalo, E., Lupiáñez, J., Botta, F., & Chica, A. B. (2015). Endogenous attention modulates attentional and motor interference from distractors: Evidence from behavioral and electrophysiological results. <i>Frontiers in Psychology</i> , 6(FEB), 1–11. https://doi.org/10.3389/fpsyg.2015.00132
32 33 34 35	887 888 889	Mazzi, C., Mazzeo, G., & Savazzi, S. (2020). Late Positivity Does Not Meet the Criteria to be Considered a Proper Neural Correlate of Perceptual Awareness. <i>Frontiers in Systems Neuroscience</i> , <i>14</i> (July), 1–14. https://doi.org/10.3389/fnsys.2020.00036
30 37 38 39 40 41 42 43 44	890 891 892 893 894	 McMackin, R., Dukic, S., Costello, E., Pinto-Grau, M., Fasano, A., Buxo, T., Heverin, M., Reilly, R., Muthuraman, M., Pender, N., Hardiman, O., & Nasseroleslami, B. (2020). Localization of Brain Networks Engaged by the Sustained Attention to Response Task Provides Quantitative Markers of Executive Impairment in Amyotrophic Lateral Sclerosis. <i>Cerebral Cortex</i>, 30(9), 4834–4846. https://doi.org/10.1093/cercor/bhaa076
45 46 47 48	895 896 897	Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. <i>Psychophysiology</i> , <i>48</i> (2), 229–240. https://doi.org/10.1111/j.1469-8986.2010.01061.x
50 51 52 53 54 55	898 899 900 901	 Molina, E., Sanabria, D., Jung, T. P., & Correa, Á. (2019). Electroencephalographic and peripheral temperature dynamics during a prolonged psychomotor vigilance task. <i>Accident Analysis and Prevention</i>, <i>126</i>(October 2017), 198–208. https://doi.org/10.1016/j.aap.2017.10.014
56 57 58 59 60	902 903 904	Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau (2005). <i>Tutorials in Quantitative Methods for Psychology</i> , 4(2), 61–64. https://doi.org/10.20982/tqmp.04.2.p061

1		50
2		
4	905	Neigel, A. R., Claypoole, V. L., Smith, S. L., Waldfogle, G. E., Fraulini, N. W., Hancock, G.
5	906	M., Helton, W. S., & Szalma, J. L. (2020). Engaging the human operator: a review of the
6 7	907	theoretical support for the vigilance decrement and a discussion of practical applications.
8	908	Theoretical Issues in Ergonomics Science, 21(2), 239–258.
9	909	https://doi.org/10.1080/1463922X.2019.1682712
10 11		
12	910	Neuhaus, A. H., Urbanek, C., Opgen-Rhein, C., Hahn, E., Ta, T. M. T., Koehler, S., Gross,
13	911	M., & Dettling, M. (2010). Event-related potentials associated with Attention Network
14 15	912	Test. International Journal of Psychophysiology, 76(2), 72–79.
16	913	https://doi.org/10.1016/j.jjpsycho.2010.02.005
17 18	914	Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilances, alertness, or sustained
19 20	915	attention: physiological basis and measurement. Clinical Neurophysiology, 117(9),
20	916	1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017.
22	917	Pauletti C Mannarelli D Grippo A Currà A Locuratolo N De Lucia M C &
23 24	918	Fattapposta F (2014) Phasic alertness in a cued double-choice reaction time task: A
25	919	Contingent Negative Variation (CNV) study <i>Neuroscience Letters</i> 581 7–13
26	920	https://doi.org/10.1016/i.neulet 2014.07.059
27 28	520	https://doi.org/10.1010/j.hediet.2011.07.009
29	921	Petersen, A., Petersen, A. H., Bundesen, C., Vangkilde, S., & Habekost, T. (2017). The effect
30 21	922	of phasic auditory alerting on visual perception. Cognition, 165, 73–81.
32	923	https://doi.org/10.1016/j.cognition.2017.04.004
33	924	Petersen, S. E., & Posner, M. I. (2012). The Attention System of the Human Brain: 20 Years
34 35	925	After. Annual Review of Neuroscience, 35(1), 73–89. https://doi.org/10.1146/annurev-
36	926	neuro-062111-150525
37		
38 39	927	Posner, M. I. (2008). Measuring Alertness. Annals of the New York Academy of Sciences,
40	928	1129(1), $193-199$. https://doi.org/10.1196/annals.1417.011
41 42	929	Posner, M. I. (2012). Imaging attention networks. NeuroImage, 61(2), 450-456.
42	930	https://doi.org/10.1016/j.neuroimage.2011.12.040
44	021	Pagner M. I. (2016) Orienting of Attention: Then and New Quarterly Journal of
45 46	931	Fosher, M. I. (2010). Otherning of Attention. Then and Now. <i>Quarterly Journal of</i>
47	932	Experimental Psychology, $09(10)$, $1804-1875$.
48	933	https://doi.org/10.1080/1/4/0218.2014.93/446
49 50	934	Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17(2),
51	935	75-79. https://doi.org/10.1016/0166-2236(94)90078-7
52 53	936	Posner M I & Petersen S E (1990) The Attention System of The Human Brain Annual
54	937	Reviews of Neuroscience 13 25-42
55	038	https://doi org/10.1146/annurey ne.13.030190.000325
56 57	220	https://doi.org/10.11+0/amurev.ne.15.050170.000525
58		
59		
60		

2		
3	939	Posner, M. I., Sheese, B. E., Odludaş, Y., & Tang, Y. (2006). Analyzing and shaping human
4 5	940	attentional networks. Neural Networks, 19(9), 1422–1429.
6	941	https://doi.org/10.1016/j.neunet.2006.08.004
7		
8 9	942	Psychology Software Tools, I. (2012). [E-Prime 2.0]. http://www.pstnet.com
10	943	R Core Team. (2021). R: A Language and Environment for Statistical Computing (R version
11 12	944	4.1.1). R Foundation for Statistical Computing. https://www.r-project.org
13 14	945	Ramautar, J. R., Romeijn, N., Gómez-Herrero, G., Piantoni, G., & Van Someren, E. J. W.
15	946	(2013). Coupling of infraslow fluctuations in autonomic and central vigilance markers:
16	947	Skin temperature, EEG beta power and ERP P300 latency. International Journal of
17 18 10	948	Psychophysiology, 89(2), 158-164. https://doi.org/10.1016/j.ijpsycho.2013.01.001
19 20	949	Randall, W. M., & Smith, J. L. (2011). Conflict and inhibition in the cued-Go/NoGo task.
21	950	Clinical Neurophysiology, 122(12), 2400–2407.
22 23	951	https://doi.org/10.1016/j.clinph.2011.05.012
24 25	952	Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews
25 26	953	Neuroscience, 7(5), 367-379. https://doi.org/10.1038/nrn1903
27	954	Reteig, L. C., van den Brink, R. L., Prinssen, S., Cohen, M. X., & Slagter, H. A. (2019).
28 29	955	Sustaining attention for a prolonged period of time increases temporal variability in
30	956	cortical responses. <i>Cortex</i> 117 16–32 https://doi.org/10.1016/j.cortex.2019.02.016
31	550	content respondes. Content, 117, 10°22. https://doi.org/10.1010/j.content.2019.02.010
32 33	957	Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). "Oops!":
34	958	performance correlates of everyday attentional failures in traumatic brain injured and
35	959	normal subjects. Neuropsychologia, 35(6), 747-758. https://doi.org/10.1016/S0028-
36 37	960	3932(97)00015-8
38 39	961	Roca, J., Castro, C., López-Ramón, M. F., & Lupiáñez, J. (2011). Measuring vigilance while
40	962	assessing the functioning of the three attentional networks: the ANTI-Vigilance task.
41	963	Journal of Neuroscience Methods, 198(2), 312–324.
42 43	964	https://doi.org/10.1016/j.jneumeth.2011.04.014
44	965	Román-Caballero, R., Martín-Arévalo, E., & Lupiáñez, J. (2021). Attentional networks
45 46	966	functioning and vigilance in expert musicians and non-musicians. <i>Psychological</i>
47	967	Research, 85(3), 1121–1135, https://doi.org/10.1007/s00426-020-01323-2
48		
49 50	968	RStudio Team. (2021). RStudio: Integrated Development Environment for R (2021.09.1
51	969	Build 372). RStudio, PBC. http://www.rstudio.com/
52	970	Sanchis, C., Blasco, E., Luna, F. G., & Lupiáñez, J. (2020). Effects of caffeine intake and
53 54	971	exercise intensity on executive and arousal vigilance <i>Scientific Reports</i> 10(1) 8393
55 56	972	https://doi.org/10.1038/s41598-020-65197-5
57	973	Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained
58	974	attention: where top-down meets bottom-up. Brain Research Reviews 35(2) 146–160
59 60	975	https://doi.org/10.1016/S0165-0173(01)00044-3
	5.5	

1		50
2		
3	976	Shallice, T., Stuss, D. T., Alexander, M. P., Picton, T. W., & Derkzen, D. (2008). The
4 5	977	multiple dimensions of sustained attention. <i>Cortex</i> , 44(7), 794–805.
5	078	https://doi.org/10.1016/j.cortex.2007.04.002
7	570	https://doi.org/10.1010/j.contex.2007.04.002
8	979	Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an
9	980	integrative theory of anterior cingulate cortex function. <i>Neuron</i> , 79(2), 217–240.
10	981	https://doi.org/10.1016/i.neuron.2013.07.007
12	501	https://doi.org/10.1010/j.hod/oh.2015.07.007
13	982	Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2021). afex: Analysis
14	983	of Factorial Experiments (R package version 1.0-1). https://cran.r-
15	984	project.org/package=afex
16 17		
18	985	Sturm, W., & Willmes, K. (2001). On the Functional Neuroanatomy of Intrinsic and Phasic
19	986	Alertness. NeuroImage, 14(1), S76–S84. https://doi.org/10.1006/nimg.2001.0839
20	007	Surgingen D. Cumpington D. Joskovn C. M. Dondon C. Dotoro A. M. Marria D. C. &
21	987	Swainson, R., Cummigton, R., Jackson, G. M., Korden, C., Peters, A. M., Morris, P. G., &
22	988	Jackson, S. R. (2003). Cognitive control mechanisms revealed by ERP and fMRI:
24	989	Evidence from repeated task-switching. Journal of Cognitive Neuroscience, 15(6), 785–
25	990	799. https://doi.org/10.1162/089892903322370717
26	001	Talama D. Mulakhuwa M. Slagtor H. A. & Theouwas J. (2007) Easter more intensal
27 28	991	Taisina, D., Mulekinuyse, M., Slagter, H. A., & Theeuwes, J. (2007). Faster, more intense!
29	992	The relation between electrophysiological reflections of attentional orienting, sensory
30	993	gain control, and speed of responding. <i>Brain Research</i> , 1178(1), 92–105.
31	994	https://doi.org/10.1016/j.brainres.2007.07.099
32 33	005	Themson D. P. Besner D. & Smilek D. (2016) A critical examination of the exidence for
34	995	Thomson, D. K., Besner, D., & Shinek, D. (2010). A critical examination of the evidence for
35	996	sensitivity loss in modern vigilance tasks. <i>Psychological Review</i> , 125(1), 70–85.
36	997	https://doi.org/10.103//rev0000021
3/	998	van Schie, M. K. M., Lammers, G. J., Fronczek, R., Middelkoop, H. A. M., & Gert van Diik,
39	999	L (2021) Vigilance: Discussion Of Related Concents And Proposal For A Definition
40	1000	Sharn Madicine, https://doi.org/10.1016/j.glaan.2021.04.028
41	1000	<i>Steep Medicine</i> . https://doi.org/10.1010/J.steep.2021.04.038
42	1001	Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance Requires Hard Mental
45 44	1002	Work and Is Stressful, Human Factors, 50(3), 433–441.
45	1003	https://doi.org/10.1518/001872008X312152
46	1005	http://doi.org/10.1010/0010/2000/1312102
47	1004	West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop
48 70	1005	and digit-location tasks. <i>Neuropsychologia</i> , 41(8), 1122–1135.
	1006	https://doi.org/10.1016/S0028-3932(02)00297-X
51		
52	1007	West, R., & Moore, K. (2005). Adjustments of cognitive control in younger and older adults.
53 54	1008	Cortex, 41(4), 570-581. https://doi.org/10.1016/S0010-9452(08)70197-7
54 55	1000	Wighthem H (2016) genlet? Florent Cumbics for Data Anchoriz Springer Varles
56	1008	wicknam, n. (2010). ggpioi2: Elegani Graphics for Data Analysis. Springer-Verlag.
57	1010	Witkowski, S., Trujillo, L. T., Sherman, S. M., Carter, P., Matthews, M. D., & Schnver, D.
58	1011	M. (2015). An examination of the association between chronic sleep restriction and
60 60		

2 3 4 5	1012 1013	electrocortical arousal in college students. <i>Clinical Neurophysiology</i> , <i>126</i> (3), 549–557. https://doi.org/10.1016/j.clinph.2014.06.026
6 7 8 9 10 11 12 13 14 15	1014 1015 1016	Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity. <i>Psychological Review</i> , 111(4), 931–959. https://doi.org/10.1037/0033-295X.111.4.931
	1017 1018 1019	Zani, A., & Proverbio, A. M. (2017). How voluntary orienting of attention and alerting modulate costs of conflict processing. <i>Scientific Reports</i> , 7(1), 46701. https://doi.org/10.1038/srep46701
15 16 17 18 19 20 22 23 24 25 26 27 28 9 30 32 33 45 36 37 38 9 0 41 23 44 45 46 7 89 51 52 53 45 56 57 58 59 60	1020 1021 1022	Zhang, D., Zhang, X., Ma, H., Wang, Y., Ma, H., & Liu, M. (2018). Competition among the attentional networks due to resource reduction in Tibetan indigenous residents: evidence from event-related potentials. <i>Scientific Reports</i> , 8(1), 610. https://doi.org/10.1038/s41598-017-18886-7

1 2		T					
2 3 4	1024	Author Note					
5 6	1025	This study was supported by the Agencia Nacional de Promoción Científica y					
7 8 9	1026	Tecnológica (Argentina) — Préstamo BID PICT (grant #2015-0753 to PB) and the Secretaría					
10 11	1027	de Ciencia y Tecnología, Universidad Nacional de Córdoba (Proyecto Estimular to FGL). JL					
12 13	1028	was supported by the Spanish MCIN/ AEI/10.13039/501100011033/, through grant number					
14 15 16	1029	PID2020-114790GB-I00. In addition, FGL received post-doctoral scholarship support and					
17 18 19 20 21	1030	MJA received PhD scholarship support from the Consejo Nacional de Investigaciones					
	1031	Científicas y Técnicas (CONICET), Argentina.					
21 22 23	1032	The methods and analysis of the current study are available in the Open Science					
24 25 26 27 28 29 30 31	1033	Framework repository, <u>https://osf.io/6kc7x/</u> . Data supporting the conclusions of this study					
	1034	will be made available on request to Fernando G. Luna (fluna@unc.edu.ar) and Pablo					
	1035	Barttfeld (<u>pablob@conicet.gov.ar</u>).					
32 33	1036	This project was possible thanks to the James McDonnell Foundation grant					
34 35 36	1037	("Understanding Human Cognition") to Mariano Sigman.					
37 38 39 40	1038	All authors disclose any potential sources of conflict of interest on this submission.					
41 42							
43 44							
45 46							
47							
48 49							
50							
51							
52 53							
54							
55							
56							
57 58							

1				41				
2 3 4	1039	Tables						
5 6 7	1040	Table 1. Summ	ary of event-related potentials	expected in the present study based on previous				
8 9 10	1041	research.						
1 1 12 13 1 <u>4</u>	Cognit	ive component	ERPs expected	Previous evidence				
15 16 ^{Ph} 17	asic aler	tness	N1, P2, and CNV	Abundis-Guitérrez et al. (2014)				
18 1901 20 21	rienting		P1, N1, and P3	Abundis-Guitérrez et al. (2014)				
22 23	xecutive of	control	N2 and SP	Abundis-Guitérrez et al. (2014)				
24 25 26 27	xecutive v	vigilance	P1 and N1	Boksem et al. (2005), Groot et al. (2021), Lara et al. (2018), McMackin et al. (2020), Reteig et al. (2019)				
28 29 30			P3 and late positivity	Bonnefond et al. (2010), Lara et al. (2018)				
31 32 <mark>4 1</mark> 33	rousal Vi	gilance	Early ERPs (P1 and N1)	Hoedlmosser et al. (2011)				
34 35 36 37	1042 1043	<i>Note</i> . ERP = ev	ent-related potential, CNV = co	ontingent negative variation, SP = slow				
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	1044	positivity.						

Table 2. Mean correct RT and percentage of errors as a function warning signal, visual cue,

1046 and congruency conditions.

7												
8 9				Reaction time (ms)				Errors (%)				
10 11			Congruent		Incongruent		Congruent		Incongruent			
12 13			M	95% CI	М	95% CI	М	95% CI	M	95% CI		
14	No tone	Invalid	630	[595, 665]	663	[630, 695]	4.02	[2.55, 5.49]	4.17	[2.77, 5.54]		
15 16 17 18		No cue	641	[608, 674]	659	[629, 690]	4.27	[2.60, 5.93]	4.07	[2.74, 5.40]		
		Valid	604	[572, 636]	630	[598, 663]	5.46	[3.82, 7.09]	4.61	[2.65, 6.57]		
19	Tone	Invalid	608	[577, 639]	657	[624, 691]	2.48	[1.62, 3.34]	2.63	[1.53, 3.72]		
20 21 22 23		No cue	582	[553, 611]	624	[595, 653]	1.88	[0.97, 2.80]	2.03	[1.16, 2.90]		
		Valid	575	[545, 605]	610	[579, 641]	2.93	[1.67, 4.18]	3.17	[2.17, 4.18]		
24	1047											

Note. M = mean, CI = confidence intervals, ms = milliseconds.

Psychophysiology

		N	Min	Max	М	95% CI
	Executive vigila	ance				
	Hits	164.81	68	212	73.57%	[67.57, 79.58]
	Misses	59.19	12	156	26.43%	[20.42, 32.43]
	Arousal vigilan	ce				
	Fastest	44.89	42	45	3 <mark>86</mark> ms	[362, 409]
	Slowest	43.92	41	44	594 ms	[555, 632]
L050						
1051	<i>Notes</i> . $N =$ absolute freq	uency per parti	cipant, M	(in = min	imum, Max	k = maximum, M
1052	CI = confidence interval	s, ms = millise	conds.			
1053	N represents the mean n	umber of trials	in which	that resp	onse was o	bserved, with its
1054	respective Min and Max	across narticin	ants Mr	enrecento	the mean	performance in th
1054	respective with and wax	across particip		epresents		performance in th
1055	score, with its respective	e variability (i.e	., 95% C	I around	the mean).	

2 3 4 5	1056	Figure captions
6 7	1057	Fig. 1. Procedure for the three types of trials of the ANTI-Vea task. Stimuli sequence and
8 9	1058	timing for (a) ANTI and executive vigilance and (b) arousal vigilance trials. In (a), the left
10 11 12	1059	panel of target and flankers represents an ANTI trial (centered target) whereas the right one
13 14	1060	represents an executive vigilance trial (displaced target). (c) Examples of visual cue
15 16 17	1061	conditions for measuring the orienting network. (d) Correct responses expected for the ANTI
17 18 19	1062	(left), executive vigilance (middle) and arousal vigilance (right) trials. All trials lasted 4100
20 21	1063	ms.; the initial and final screens had a random timing aiming at making the response' stimuli
22 23 24	1064	appearance time unpredictable. In all trials, responses were allowed until 2000 ms.
25 26	1065	Fig. 2. Mean correct RT (superior graphs) and percentage of errors (bottom graphs) for
27 28 29	1066	warning signal (left panels), visual cue (center panels), and congruency (right panels)
30 31	1067	conditions. Error bars represent 95% CI of the mean and were computed following the
32 33 34	1068	Cousineau-Morey method (Morey, 2008).
35 36	1069	Fig. 3. Executive (left panel) and arousal (right panel) vigilance performance across blocks.
37 38 30	1070	Error bars represent 95% CI of the mean and were computed following the Cousineau-Morey
40 41	1071	method (Morey, 2008).
42 43 44	1072	Fig. 4. Event-related potentials associated with (a) phasic alertness and (b) the orienting
45 46	1073	network. (a) Signal amplitude as a function of warning signal condition (no tone/tone) at Fcz,
47 48	1074	locked at warning signal stimuli (dashed vertical red line). Signal amplitude locked at target
49 50 51	1075	stimuli (dashed vertical black line) as a function of cueing validity (valid/invalid, presented at
52 53	1076	the dashed vertical gray line) at the average of (b) O1, Oz, and O2 channels for P1 and N1
54 55	1077	components and (c) CPz and Pz channels for P3 component. In (b) and (c), the difference
56 57 58	1078	wave represent mean difference between invalid and valid signal. Significant differences ($p < p$
58 59 60	1079	.05) between conditions at each time point are highlighted with a black line above the x-axis.

Page 47 of 56

Psychophysiology

Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). Topoplots represent tone minus no tone signal in (a) and invalid minus valid signal in (b) and (c). Channels of interest (named in each figure title) are highlighted with a yellow marker on each topoplot. Fig. 5. Event-related potentials associated with the executive control network (a and b) and with the executive control network modulated by the cueing validity effect (c and d). Signal amplitude target-locked as a function of congruency at (a) the average of CPz and adjacent channels for N2 component and (b) Pz channel for SP component. Signal amplitude target-locked as a function of congruency at the average of CPz and adjacent channels for N2 component in (c) valid cue condition and (d) invalid cue condition. The visual cue (dashed vertical gray line) is presented 50 ms before the target (dashed vertical black line). In all amplitude signal plots, significant differences (p < .05) between conditions at each time point are highlighted with a black line above the x-axis. Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). Topoplots represent incongruent minus congruent signal in (a) and (b), and incongruent minus congruent signal in valid (c) and invalid (d) trials. Channels of interest (named in each figure title) are highlighted with a yellow marker on each topoplot. Fig. 6. Event-related potentials associated with executive vigilance as a function of overall performance (a and b) and the decrease in hits (c and). Signal amplitude target-locked as a function of hits and misses at (a) Pz for P1, N1, and P3 components and (b) Cz and adjacent channels for SP component. Signal amplitude target-locked for hits as a function of task period (first/last) at (c) Pz for P1, N1, and P3 components and (d) Cz and adjacent channels for SP component. In all amplitude signal plots, significant differences (p < .05) between conditions

 at each time point are highlighted with a black line above the x-axis. Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). Topoplots represent misses minus hits signal in (a) and (b), and last minus first period signal for hits in (c) and (d). Channels of interest (named in each figure title) are highlighted with a yellow marker on each topoplot.

Fig. 7. Event-related potentials associated with arousal vigilance performance. Signal amplitude target-locked as a function of reaction time (fastest/slowest) at (a) O1, (b) Oz, and (c) O2, for N1 and P2 components. In all amplitude signal plots (a, b, and c), significant differences (p < .05) between conditions at each time point are highlighted with a black line above the x-axis. Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). (d) Topoplots represent slowest minus fastest reaction time' signal for N1 (260 ms) and P2 (390 ms). In all topoplots, channels of interest are represented with a yellow marker for that component.

1 2 3 **Figures** 1119 4 5 6 Figure 1. 1120 7 8 9 b. a. + [400; 1600] ms 10 11 Warning signal + + [400; 1600] ms 12 50 ms 13 + 14 350 ms 500 ms + 15 Visual cue 16 Down counter 50 ms 17 1000 + RT or 1000 ms 18 50 ms 19 Target and flankers 20 + + + [1000; 3200] ms 21 200 ms 22 Trial duration: 4100 ms Trial duration: 4100 ms 23 ÷ [1800; 3000] ms 24 _____ 25 c. Invalid cue No cue Valid cue 26 *+ 27 + +* 28 29 + + + 30 31 32 33 34 d. ANTI Executive Vigilance Arousal Vigilance 35 Congruent . + + + + 36 1000 SPACE BAR 37 SPACE BAR Incongruent 38 ANY KEY 39 SPACE BAR and SPACE BAR 40 41 1121 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Figure 4.

Supplementary Material

Supplementary Figure 1. Event-related potentials associated with the orienting network. Signal amplitude locked at target stimuli (dashed vertical black line) as a function of valid/invalid/no cue conditions at the average of (a) O1, Oz, and O2 and (b) CPz and Pz channels. Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). Note that signal between valid/invalid and no cue conditions is similar at baseline.

Supplementary Figure 2. Event-related potentials associated with the modulation of executive control by the orienting network. Signal amplitude locked at target stimuli (dashed vertical black line) as a function of valid/invalid/no cue conditions at the average of CPz and adjacent channels for (a) congruent and (b) incongruent trials. Shadowed traces around mean signal represent within-participant 95% CI of mean for that condition and were computed with the Cousineau-Morey method (Morey, 2008). Note that signal between valid/invalid and no cue conditions is similar at baseline and that N2 is observed in the same time window in valid/invalid and no cue conditions.

