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The degree of correspondence between objective performance
and subjective beliefs varies widely across individuals. Here we
demonstrate that functional brain network connectivity measured
before exposure to a perceptual decision task covaries with individual
objective (type-I performance) and subjective (type-II performance)
accuracy. Increases in connectivity with type-II performance were
observed in networks measured while participants directed atten-
tion inward (focus on respiration), but not in networks measured
during states of neutral (resting state) or exogenous attention.
Measures of type-I performance were less sensitive to the subjects’
specific attentional states from which the networks were derived.
These results suggest the existence of functional brain networks
indexing objective performance and accuracy of subjective beliefs
distinctively expressed in a set of stable mental states.

interoception | metacognition | resting-state | partial-report-paradigm

Decisions often bear upon other decisions, as when we seek
a second medical opinion before undergoing a risky surgical

intervention. These “metadecisions” are mediated by confidence
judgments, the degree to which decision makers consider that
their choices are likely to be correct. Confidence judgments can
be severely distorted: People may lack confidence when respond-
ing correctly and reciprocally, be very confident of incorrect
responses (1–6). In classic perceptual tasks followed by a confi-
dence report, one can distinguish between (i) the ability to
correctly discriminate between stimulus alternatives, referred to
as type-I performance, and (ii) the ability of confidence judg-
ments to discriminate between correct and incorrect responses,
referred to as type-II performance (2, 7). The objective of this
work is to investigate whether functional brain networks dis-
tinctively covary with type-I and type-II performance.
Network organization of resting state functional brain activity

can account for individual differences in several cognitive functions
(8–13). These studies rely on networks derived from the “resting
state” (14, 15). Recently, Tang et al. (16) showed the formation
of distinct brain networks in the maintenance of three well-
defined mental states that vary the focus of attention: resting,
alert, and meditation states (16). Here we capitalize on this idea,
deriving functional brain networks for each individual, varying
the focus of attention toward internal states (interoception, focus
on respiration), external stimulus (exteroception), or remaining
in a resting state of free thought.
Interoception (generically defined as the ability to detect subtle

changes in bodily systems, including muscles, skin, joints, and
viscera) (17), is closely related to metacognition of agency (18, 19).
We reasoned that this may more generally reflect a partially over-
lapping system regulating attention to internal states, including
interoception (focus on body systems) and metacognitive ability

(focus on internal thoughts and feelings). Hence, our working hy-
pothesis is that increases in functional connectivity with the quality
of subjective judgments (type-II performance) should be more
sensitive in networks expressed while attention is directed inward
compared with networks obtained in other attentional states.
We measured functional networks in three different attentional

states: exteroceptive attention (detecting an oddball within a se-
quence of sounds), interoceptive attention (focusing on respi-
ration), and resting state (relaxing without falling asleep), while a
sequence of tones was presented at a very low volume in all states.
We then investigated the covariance of functional connectivity,
measured in different attentional states, with type-I and type-II
performance in a perceptual decision task.

Results
After the functional MRI (fMRI) recordings, participants per-
formed a partial report (PR) experiment, identifying a letter in a
cued location of a cluttered field (20) and indicating the degree
of confidence in their response in a continuous scale (Fig. 1A) (3).
Type-II performance can be quantified by measuring the area
under the receiver operating characteristic curve (AROC) (2, 21).
This nonparametric test estimates the degree of overlap between
confidence distributions for correct and error trials. Type I and
type II varied widely between subjects (Fig. 1 B and C) with a
significant correlation (r = 0.74, P < 0.001) but with sufficient
dispersion to allow a reliable simultaneous regression of the
fMRI signal to both factors.
To test whether coherence in spontaneous activity between

brain regions in different attentional states covary with type-I
and type-II performance, we conducted a functional connectivity
analysis, based on 141 standard previously defined cortical re-
gions of interest (ROIs) (22). Following the work of Dosenbach
and colleagues (22, 23), ROIs were grouped in five different
functional systems: frontoparietal (FP), cinguloopercular (CO),
default brain network (DBN), sensorimotor (SM), and occipital
(OC) (Fig. S1).
For each attentional state s (interoceptive, exteroceptive, or

resting) and participant p we measured a 141 × 141 connectivity
matrix Cs,p. The matrix entry Cs,p(i,j) indicates the temporal corre-
lation of the average fMRI signal of ROIs i and j, which henceforth
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is referred as functional connectivity. To investigate connectivity
changes associated with type-I and type-II performance, we con-
ducted an across-subjects bivariate linear regression, between
each entry of the correlation matrix Cs,p and type-I and type-II
performances of the subject in the PR task. This led to six ma-
trices of beta (β) values, Bs,r(i,j), one per attentional state s and
regression r to type-I or type-II performance (Fig. S2). As an ex-
ample, a positive value of Bresting,type-I(i,j) indicates that connectivity
between ROI(i) and ROI(j) increases with type-I performance for
networks measured in the resting state.
For visualization purposes, we projected Bs,r(i,j) values ex-

ceeding a threshold of 3 SDs into glass brains (Fig. 2 A and B).

For type-I performance (Fig. 2A), the vast majority of values
were positive, showing a marked tendency of increased connec-
tivity with type-I performance. On the contrary, Bs,r(i,j) values
indexing how connectivity varies with type-II performance—
Bs,type-II(i,j)—showed different patterns across states (Fig. 2B).
For networks measured in the exteroceptive and resting states,
the vast majority of values were negative, indicating a marked
tendency of decrease in connectivity with type-II performance.
This pattern was different for networks measured in the inter-
oceptive state. The regression revealed a dense distribution of
positive Binteroceptive,type-II values for ROIs localized within the
frontoparietal system and negative Binteroceptive,type-II values within

A B

C

Fig. 1. (A) Subjects performed a partial report task experiment identifying a letter in a cued location of a cluttered field (3) and subsequently indicating the
degree of confidence in their response in a continuous scale. (B) Individual ROC curves reflect a broad variability in metacognitive accuracy. (C) Type-I and
type-II performance show a significant correlation across individuals, but with sufficient dispersion to perform a reliable bivariate regression to both factors.
Dotted lines mark random type-I (1/26) and type-II (0.5) performance.

A

B

Fig. 2. Dependence of functional brain connectivity with type-I and type-II performance measured by a bivariate regression of connectivity to both factors.
Red links denote positive beta (β) values (connectivity increases with performance). Blue links negative β-values (connectivity decreases with performance). For
visualization purposes only β whose absolute value exceeded 3 SDs were depicted. For each ROI, the size of the sphere denotes the number of connections
exceeding 3 SDs. Color indicates the functional system to which the ROI belongs. (A) β-Values for type-I performance. ROIs whose connectivity varies positively
with type-I performance were mostly located in medial and posterior brain regions. The four ROIs with the highest rank in the number of connections
exceeding a threshold (for networks measured under exteroceptive state, the state with the highest average β-value) are in dorsal frontal cortex ([60, 8, 34]),
occipital cortex ([−16, −76, 33]), the precuneus ([11, −68, 42]) and parietal cortex ([−26, −8, 54]) (see Table 1 for the top 15 ROIs), which is consistent with
previous findings of connectivity in the resting state predicting visual performance (11). (B) β-Values for type-II performance. The spatial distribution of ROIs
whose connectivity increases for increasing type-II performance was mostly located in frontal regions in the FP and DBN. The 4 ROIs with the highest rank
in the number of connections exceeding a threshold (for networks measured under interoceptive state, the state with the highest average β-value) are in the
ventromedial prefrontal cortex ([−11, 45, 17] and [9, 51, 16]), the dorsal frontal cortex [−42, 7, 36] and the anterior prefrontal cortex [42, 48, −3] (see Table 2
for the top 15 ROIs).
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medial and occipital regions, involving nodes from the occipital
and cinguloopercular systems (Fig. 2B, Right).
To quantify these observations, we first reduced the dimension-

ality of the connectivity matrix by collapsing all of the connections
between ROIs belonging to each pair of functional systems to
a single scalar value. For each state s and subject p, we derived
the average (reduced) connectivity matrix Ĉs,p, a 5 × 5 matrix
resulting from all possible pairings between FP, OP, DBN, SM,
and OC. Each entry (n,m) of this matrix represents the average
connectivity between system n and system m. Note that the in-
teraction between a functional system with itself reflects the in-
teraction between all of the ROIs within this functional system
and hence the diagonal elements of Ĉs,p are not trivially and
maximally correlated. The entries of these matrices were submitted
as dependent variables to an analysis of covariance (ANCOVA),
with type-I and type-II performance as continuous regressors, at-
tentional state (exteroceptive, resting, and interoceptive) as within-
subjects factor and subject identity as a random-effect factor.
The ANCOVA revealed a main effect for type-I performance
[F(1, 21) = 6.26, P < 0 0.05] but not for type-II performance
[F(1, 21) = 1.38, P > 0.1]. In Fig. 2 it can be observed that there
is a main trend of type-II effect (when regressed together with
type I) to decrease connectivity, but this effect does not reach
significance when analyzed in an ANCOVA as a main effect.
Conversely, we observed a significant interaction between atten-
tional state and type-II performance [F(2, 42) = 3.72, P < 0.05]
and a nonsignificant interaction between type-I performance and
attentional state [F(2, 42) = 0.37, P > 0.5]. These results show that
functional connectivity relates to type-I performance in a way
that is independent of the attentional state, whereas the relation
between connectivity and type-II performance varies with the
attentional state of the subjects.
Next, to investigate the sensitivity of functional networks, mea-

sured under different attentional states, to type-I and type-II per-
formance, we submitted independently for each state s, the entries
of the reduced connectivity matrix Ĉs,p to three independent in-
trastate ANCOVAs with type-I and type-II performance as con-
tinuous regressors, and subject identity as a random variable. The
ANCOVA tests revealed a main effect of type-I performance on
networks measured under exteroceptive and interoceptive states
[exteroceptive: F(1,21) = 4.95, P < 0.05; interoceptive: F(1,21) =
4.72, P < 0.05]. We observed a main effect of type-II perfor-
mance on connectivity only in the interoceptive state [F(1,21) =
6.48, P < 0.02], reaching a higher level of significance than all
other comparisons. The effect of type-II performance was not
significant in the exteroceptive [F(1,21) = 0.88, P > 0.1] or resting
[F(1,21) = 0.05, P > 0.1] states.

The ANCOVA analyses described above show the global trends
of how connectivity (accumulated over all pairs of functional sys-
tems) depends on performance and attentional state. They show
that connectivity increases for more accurate type-I performers for
all attentional states. Instead, the effect of type-II performance
shows a more complex pattern that depends on the attentional
state. However, the ANCOVA cannot describe which specific
connections contribute to these effects. To this aim we performed
a one-sample t test following the ANCOVA reported above. For
each attentional state s, regressor (r, type-I or type-II perfor-
mance), and pair of functional systems Sn Sm, we considered all
of the Bs,r(i,j) where ROI(i) belongs to system n and ROI(j)
belongs to system m. Note that connectivity (and hence Bs,r) is
symmetric. This analysis naturally extends to connections of a
system with itself by considering the Bs,r(i,j) values of all of the
ROIs within one system (excluding of course the connectivity of
a ROI with itself). Then, for each condition and pair of systems
(n,m) the statistical significance of the dependence of this specific
connection with performance was assessed comparing whether the
distribution of dependences [i.e., Bs,r(i,j) values for all ROI(i) -
ROI(j) connections] differed from zero, by means of a one-
sample t test and correcting for multiple comparisons. A significant
negative t value indicates that the distribution of Bs,r(i,j) values for
that system pair (n,m) is shifted toward negative values (indicating
a tendency to decrease connectivity between systems n and m as
performance increases). Instead, a significantly positive t value
indicates that the distributions of Bs,r(i,j) for that system pair (n,m) is
shifted toward positive values (indicating that connectivity between
systems n and m increases as performance increases).
Fig. 3 represents these results displaying a link for each pair of

functional systems when the t value of the dependence in con-
nectivity is higher than 5.35, corresponding to a P value of 10−5,
Bonferroni corrected for multiple comparisons (Fig. 3 A and B).
First, we observe that connectivity between many pairs varied with
type I and type II. This shows that the effect of the ANCOVA
described above does not result from a sparse distribution of
changes but instead from broad and distributed changes in the
connectivity pattern. Functional connectivity showed an overall
increase in connectivity with type-I performance. A major core,
including interactions between OC–CO–SM systems and the SM–

DBN interaction, reached the highest levels of significance (Fig.
3A). This indicates that subregions within this core coherently
increased their connectivity with increasing type-I performance.
For type-II performance, connectivity between functional systems
showed an overall decrease with performance for the extero-
ceptive and resting states. Only for networks measured under the
interoceptive state, we observed increases in connectivity with

A

B

Fig. 3. Connectivity between functional systems and its relation with type-I and type-II performance. (A) T values from a one-sample t test analysis quantifying
the magnitude of β-values for type-I performance averaged across system pairs, for all attentional states. Negative t values indicate a decrease in connectivity
between systems n and m as type-I performance increases, whereas a significantly positive value indicates a connectivity increase between systems n and m
increases as type-I performance increases (P value of 10−5, Bonferroni corrected for multiple comparisons). (B) T values from a one-sample t test analysis
quantifying the magnitude of β-values for type-II performance averaged across system pairs, for all attentional states.
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increasing type-II performance, specifically involving systems FP
(to SM, DBN, OC, and FP itself), SM (to itself), and CO (to DBN).
This reveals a core formed by reciprocal connections between
ROIs belonging to the FP–DBN–CO systems whose connectivity
shows distinct patterns of dependence with type-II performance
in the interoceptive state compared with resting and extero-
ceptive states.

Discussion
We combined measures of objective performance, fluctuations
of brain activity in different states, and subjective estimates of
performance (24) to investigate which aspects of functional con-
nectivity correlate with the wide variability observed in objective
(type I) performance and metacognitive (type II) ability. Spe-
cifically, we examined whether increases in functional connec-
tivity with type-II performance are distinctively manifested when
attention is directed inward (focus on respiration). We found
that connectivity in states of neutral (resting state) or exogenous
attention globally decreased with increasing type-II performance.
Instead, connectivity measured in the interoceptive state showed
a more complex dependence with type-II performance: connec-
tivity within a core formed by FP, SM, and DBN systems increases
with type-II performance and connectivity between OC and CO
systems decreases with type-II performance. Contrary to this state
dependence observed in the covariation of connectivity with
type-II performance, the relation between type-I performance and
functional connectivity was less sensitive to the specific subjects’
mental states from which the functional networks were derived.
We emphasize that these analyses are only correlational and

do not imply any causality or directionality. Our hypothesis is
that connectivity between brain regions should have an effect
on (type I and type II) performance in a task. On the other hand,
the ANCOVA analyses test how connectivity varies as a function
of task performance and attentional state. We have tried not to
use semantic descriptions involving causal relations (such as
“predict” and “explain”) but as a note of caution here we explicitly
mention that all our analyses can only show a correlational and
nondirectional relation between connectivity and performance.
As expected from previous anatomical (2), lesion (25), and

transcranial magnetic stimulation (TMS) (7) studies, we found
that the prefrontal cortex (PFC) was one of the regions whose
connectivity was more sensitive to type II performance. This
includes Brodmann area 10 and dorsolateral prefrontal cortex,

known to play an important role in linking objective performance
to subjective beliefs (2, 21). However, beyond these specific
nodes, we also observed an increase in connectivity with an
individual’s type-II performance in a much broader network
including ventrolateral PFC, bilateral inferior parietal lobules,
angular gyrus, and bilateral precentral gyrus. This observation is
in line with theories of conscious perception relying on long-
distance brain networks linking prefrontal cortex with other
brain regions, including the parietal cortex (26–28).
Our work builds on previous studies showing that variability

in several cognitive functions, including reading (11), executive
control (12), intelligence (13), insight (10), working memory (8),
perceptual learning (29), and attention (9) can be accounted for
by the organization of resting state networks. The uniqueness of
our work is twofold: First, it distinctively identifies networks that
covary with objective (type I) performance on a visual task and
metacognitive accuracy (type II). Second, it measures functional
networks in different attentional states to examine whether a rel-
atively narrow library of networks of stable mental states may be
better indicators of individual traits than measures of resting state
per se (16, 30).
Relative to this second specific aim, the most important result

of this study is that networks measured during a state of inter-
oception show a distinct pattern of dependence on type-II per-
formance compared with networks obtained in the resting state
or state of exteroceptive attention. Only networks measured in
the interoceptive state show connections increasing with type-II
performance. One of the regions showing increased connectivity
to other nodes with type-II performance is the angular gyrus
(AG), typically associated with awareness of action authorship
(31). However, we did not find a change in connectivity with
type II performance for other brain structures involved in inter-
oception, such as insula and anterior cingulate (32, 33). Hence,
interoception and metacognitive ability show partial overlap on
brain circuitry.
These findings build on Garfinkel and colleagues’ behavioral

study (34) of recall and confidence of stimuli presented at different
moments of the heart cycle; systole (bursts indicating heart con-
tractions) and diastole (heart relaxations). A deficit in recall was
observed specifically for targets perceived with low confidence
during the systole. Participants with high interoceptive accuracy
were more immune to this deficit in recall and as a consequence

Table 1. Regression to type-I performance, top 15 ROIs

MNI coordinates

ROI label Networkx y z

60 8 34 Dorsal frontal cortex Sensorimotor
−16 −76 33 Occipital Occipital
11 −68 42 Precuneus Default

−26 −8 54 Parietal Sensorimotor
45 −72 29 Occipital Default
43 1 12 Ventral frontal cortex Sensorimotor
17 −68 20 Postoccipital Occipital

−55 −22 38 Parietal Occipital
−36 −12 15 Mid insula Sensorimotor
58 −3 17 Precentral gyrus Sensorimotor
−9 −72 41 Occipital Sensorimotor
27 49 26 Anterior PFC Default

−41 −31 48 Postparietal Cinguloopercular
33 −12 16 Mid insula Sensorimotor
60 8 34 Dorsal frontal cortex Sensorimotor

ROIs with the highest rank in the number of connections whose β-value
for type-I performance exceeded a threshold of 3 SDs, for networks mea-
sured under exteroceptive state. MNI, Montreal Neurological Institute.

Table 2. Regression to type-II performance, top 15 ROIs

MNI coordinates

x y z ROI label Network

−11 45 17 Ventromedial PFC Default
9 51 16 Ventromedial PFC Default

−42 7 36 Dorsal frontal cortex Frontoparietal
42 48 −3 Ventral anterior PFC Frontoparietal
54 −44 43 Inferior parietal lobule Frontoparietal

−47 −12 36 Parietal Sensorimotor
−55 −44 30 Parietal Cinguloopercular
44 −52 47 Inferior parietal lobule Frontoparietal

−35 −46 48 Postparietal cortex Frontoparietal
−5 −52 17 Postcingulate cortex Default

−52 28 17 Ventral PFC Frontoparietal
40 36 29 Dorsolateral PFC Frontoparietal

−54 −9 23 Precentral gyrus Sensorimotor
−11 −58 17 Postcingulate Default
−11 45 17 Inferior parietal lobule Frontoparietal

ROIs with the highest rank in the number of connections whose β-value
for type-II performance exceeded a threshold of 3 SDs, for networks mea-
sured under interoceptive state.
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confidence becomes a worse indicator of future recall (because
both high and low confidence elements are recalled). Thus, par-
ticipants with high interoceptive accuracy have worse metacognitive
accuracy of future recall during the systole. This leads to a negative
correlation between type-II performance and introspective abil-
ity, which may seem at odds with our finding that only networks
measured in the interoceptive state show connections increasing
with type-II performance. However, there is no intrinsic contra-
diction between these results: a partial overlap on brain circuitry
of interoception and metacognitive ability may reveal itself as
a competition between these processes, yielding results similar to
those found by Garfinkel and colleagues (34). In the following
paragraphs we argue how these arguments can be sketched for
specific predictions of interactions between the systems of meta-
cognitive ability and interoception. More generally, our work on
functional brain networks and Garfinkel et al.’s behavioral studies
(34), are only the first steps to understanding what may be a
complex pattern of interactions between the systems of meta-
cognitive ability and interoception. This may help bridge the fertile
but largely disconnected literature of metacognitive ability (2,
35–37) and interoception (17, 32, 33, 38).
Beyond the results described in this study, other predictions de-

rive from the hypothesis of partially overlapping systems of meta-
cognitive ability and interoception: (i) Training interoception—for
instance with interventions of mindfulness—may be a vehicle to
partially improve metacognitive ability in a broad and nonspecific
manner. (ii) Psychiatric disorders with deficits of interoception
(such as depersonalization disorders; ref. 39), should reflect a
specific deficit in type-II performance without affecting type-I
performance. (iii) Synchronic expression of introspective and
interoceptive tasks may reflect a bottleneck and hence inter-
ference. As in ref. 2, concurrent performance with an intero-
ceptive task may impair (or delay, or interact with) type-II, but
not type-I performance. (iv) Finally, a more speculative and
theoretically provoking thought is that metacognitive ability and
interoception may share a fundamental role in cementing con-
scious experience. In several psychological theories, metacognition
is considered a process of second-order (meta) representation of
first-order processes, which is constitutive of consciousness (see
ref. 36 for a review). Similarly, interoceptive sensitivity has often
been identified as a precursor of consciousness, although of a
different kind: awareness of one’s body, which is intimately linked
to self-identity and self-consciousness (40). Hence a further pre-
diction that can be examined empirically is that manipulations
affecting conscious state (through sleep or mild sedation for
instance) should show a correlated fade out of interoceptive and
metacognitive abilities.
Our results extend the reach of the covariations of connectivity

of previous studies to the domain of metacognition and highlight
that mental states of interoceptive, resting, and exteroceptive at-
tention convey different information about future objective per-
formance and accuracy of subjective beliefs. Beyond the specific
consequences for the domain of metacognition, our results in-
dicate how information about individual traits may be enriched
when based on a set of functional brain networks obtained from
different mental states.

Materials and Methods
Participants. Twenty-five subjects (12 male; mean age = 25.06 y) with normal
or corrected-to-normal vision, no report of history of psychiatric or neurological

disorders, and no current use of any psychoactive medications, gave their
written consent to participate in the experiment. The study was conducted
in accordance with the Declaration of Helsinki and approved by the in-
stitutional ethics committees of the Fundación para la Lucha contra las
Enfermedades Neurológicas de la Infancia (Argentina) and Glasgow uni-
versity (UK). Sixteen subjects were from Buenos Aires and 9 from Glasgow,
Scotland. Both groups showed a very similar pattern of results in the main
observations of this study (Fig. S3) and hence were pooled together to in-
crease the statistical power.

Partial Report (Behavioral) Experiment. Several days after the fMRI recordings,
participants performed a PR experiment, identifying a letter in a cued location
of a cluttered field (3). Participants were asked to report, using a standard
keyboard, the letter presented in the position cued by the red circle, which
remained on screen until the subject’s response. Random performance is
1/26, because for each trial, subjects had to choose 1 of 26 possible letters.
Subsequently, participants indicated the degree of confidence in their
response in a continuous scale (Fig. 1A). Performance in the objective
task (reporting the letter, or type-I performance) and performance in the
subjective task (reporting confidence on response, or type-II perfor-
mance) were used as linear regressors for functional MRI connectivity. To
explore how much of the total variance in the fMRI data was explained by
the two behavioral regressors, we calculated the R-square value (Fig. S5).

fMRI Recordings and Analysis. Functional images from Buenos Aires were
acquired on aGEHDx 3.0TMR systemwith a conventional eight-channel head
coil. Twenty-four axial slices (5 mm thick) were acquired parallel to the plane
connecting the anterior and posterior commissures and covering the whole
brain [repetition time (TR) = 2,000 ms, echo time (TE) = 35 ms, flip angle =
90]. To aid in the localization of functional data, high-resolution structural
T1 image [3D Fast inversion recovery spoiled gradient echo (SPGR-IR), in-
version time 700 mm; flip angle (FA) = 15, field of view (FOV) = 192 × 256 ×
256 mm; matrix 512 × 512 × 168; slice thickness 1.1 mm] was also acquired.
Images from Glasgow were acquired on a 3-T Siemens MRI system (Magnetom
Vision; Siemens Electric) with the same parameters.

Subjects underwent three functional runs lasting 7 min 22 s each for the
Buenos Aires dataset and 12 min for the Glasgow dataset. We ran the ex-
periment in Glasgow with longer time series to assure that the functional
networks measured with 7 min 22 s were stable and close to convergence to
a stationary value (Fig. S4). Subjects were instructed to keep their eyes closed
without falling asleep. Random sequences of tones with the same distribution
of duration (200 ms), pitch (400 Hz), and oddball frequency (pitch 410 Hz
every 15 tones) were presented every 400 ms during the three blocks at very
low volume. In the interoceptive attention run, participants were instructed
to focus on their respiration cycle, perceiving the air flowing in and out. In
the exteroceptive attention, participants were informed that they would
hear a series of sounds and should focus on it. In the resting block, subjects
were instructed to relax, not to do any mental effort and not to fall asleep.
After the recordings we asked subjects whether they heard the beeps in the
other runs. None of the subjects reported noticing the tones in the resting
state or interoceptive attention, indicating that in absence of directed atten-
tion the tones were camouflaged within the noise of the scanner. Conversely,
all subjects reported a consistent approximate number of odd tones during
the exteroceptive attention run. As the goal of our study was simply to direct
subjects’ attention to different states, we did not measure auditability but
sounds were presented with exactly the same parameters in all three states.
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Partial Report (Behavioral) Experiment. The partial report (PR) ex-
periment was programmed in Python (www.python.org). Stimuli
were presented on a 19-inch screen (resolution of 800 × 600 pixels)
placed at a distance of 73 cm (Fig. 1A). Letter fonts were uppercase
Times New Roman with a font size of 1.2°. Letters were chosen
randomly from the alphabet (26 symbols), without repetition.
Eight inter-stimulus intervals (ISIs, the period between the
offset of array to onset of cue) were used (24, 71, 129, 200, 306,
506, 753, and 1,000 ms). Each observer first completed a prac-
tice block of 50 trials. Subjects completed four blocks (384
trials). In each block all positions (total of eight) and all ISIs
(total of eight) were uniformly sampled in random order. In each
trial, eight letters were presented simultaneously for 106 ms. The
eight letters were arranged on a circle, around the fixation point
(eccentricity 5.2°). A red dot on an array of blue dots indicated
the position of the target. Participants were asked to report,
using a standard keyboard, the letter presented in the position
cued by the red circle, which remained on screen until subject’s
response. Random performance is 1/26, because for each trial,
subjects had to choose 1 of 26 possible letters. Subsequently,
participants had to report the confidence of their response with
an ad hoc bar placed in the center of the screen and composed
of 13 division marks and two labels: “0% confidence” at the
extreme left of the bar, and “100% confidence” at the extreme
right of the bar (“0% seguro” and “100% seguro,” in Spanish)
(Fig. 1A). The experiment lasted ∼45 min.

Estimation of Individual Metacognitive Ability. To estimate subjects’
metacognitive ability, we calculated a type-II receiver operating
characteristic (ROC) curve for each participant (1), categorizing
as a hit (H) a high confidence response after a correct decision,
and as a false alarm (FA) when subject reported high confi-
dence after a wrong decision. ROC curves were anchored at
[0, 0] and [1, 1]. Curves were plotted using the cumulative
probabilities of H = pðconfidence= = ijcorrect trialÞ and FA=
pðconfidence= = ijerror trialÞ, where i represents the bin size,
set at 10, to categorize the continuous subjective responses.
A ROC curve that bows sharply upward indicates that the prob-
ability of being correct rises rapidly with confidence; conversely,
a flat ROC function indicates a weak link between confidence
and accuracy. We calculated the area between the ROC curve
and the x axis (possible values range from 0 to 1) as an estimate of
a subject’s introspective ability.

Functional MRI Preprocessing. Functional MRI (fMRI) data were
preprocessed using statistical parametric mapping (SPM5) soft-
ware (http://www.fil.ion.ucl.ac.uk/spm). The first four image ac-
quisitions of the task-free functional time series were discarded to
allow for stabilization of the MR signal. The remaining 220 vol-
umes (360 for the Glasgow dataset) underwent the following
preprocessing steps: slice timing, realignment to the first scan,
normalization, and smoothing [8 mm full width at half maxi-
mum (FWHM) isotropic Gaussian kernel]. Normalization to
the Montreal Neurological Institute (MNI) template was
computed on the structural image and then applied on func-
tional data. Following the procedure of Fox et al. (2), we re-
moved by regression the six parameters resulting from rigid body
correction for head motion.

fMRI Analysis. Analyses were done using Matlab (MathWorks)
and R software for statistics (3). To study the relation between

functional connectivity and metacognitive ability, we used a pre-
viously defined set of regions of interest (ROIs) (4) composed of
141 ROIs comprising five functional systems [frontoparietal (FP),
cinguloopercular (CO), default brain network (DBN), sensorimotor
(SM), and occipital (OC)] (Fig. S1). Systems differ within a narrow
range in the number of ROIs they contain, varying between 21 (FP)
and 33 (SM) ROIs. We built ROIs containing the voxels of a 5-mm
sphere around each ROI coordinate, as defined in ref. 4. For each
ROI, a time series was extracted for each individual and each state,
using the Marsbar software package (http://marsbar.sourceforge.
net). These regional fMRI time series were then used to con-
struct a 141-node functional connectivity network for each sub-
ject and attentional state. We used wavelet analysis to construct
correlation matrices from the time series. We followed the pro-
cedures exactly as described by Supekar and collaborators (5):
We applied a maximum overlap discrete wavelet transform
(MODWT) to each of the time series to obtain the contributing
signal in the following three frequency components: scale 1
(0.13–0.25 Hz), scale 2 (0.06–0.12 Hz), and scale 3 (0.01–0.05 Hz).
Several studies have suggested that wavelet filtering might be
better suited for fMRI time series than Fourier filtering (5, 6).
All subsequent analysis was done based on the scale 3 component,
whose frequency lies in the range of slow frequency correlations
of the default network (2, 7). For each attentional state s (intero-
ceptive, exteroceptive, or resting) and participant p we measured a
141 × 141 connectivity matrix Cs,p. The matrix entry Cs,p(i,j) in-
dicates the temporal correlation of the average fMRI signal of
ROIs i and j, which henceforth is referred to as functional
connectivity.
To study functional connectivity correlates of type-I and type-II

performances (Fig. 2 A and B) we conducted an across-subjects
bivariate linear regression, using the least squares method, be-
tween each entry ij of the connectivity matrix Cs,p(i,j) and type-I
and type-II performances in the PR task. This way we obtained
a matrix Bs,r(i,j) per attentional state s and regression r to type-I
or type-II performance, in which each entry ij represents the
dependence or beta (β) value for the connectivity between ROI(i)
and ROI(j), and type-I or type-II performance. Fig. S2 shows the
Bs,r matrices. We also calculated the R-squared values, to mea-
sure the amount of total variance in the fMRI data explained by
the linear model (Fig. S5). Visualizations of the Bs,r(i,j) values in
glass brains were done using custom software in Python for the
Anatomist/BrainVisa software. We projected into a glass brain
a link between ROI(i) and ROI(j) if the Bs,r(i,j) value for that
connection exceeded a certain threshold (Fig. 2 A and B and
Tables 1 and 2 list the 15 ROIs with the highest rank in the
number of connections whose β-value were positive and exceeded
the threshold, for type-I and type-II performances). The threshold
was set to a value of 3 SDs above the mean of the distribution of
Bs,r obtained from networks measured under exteroceptive state
(for dependences to type-I performance) and interoceptive state
(for dependences to type-II performance). We chose these par-
ticular states to calculate the threshold for each performance
because, for networks derived from those attentional states, the
average of Bs,r reached the highest value. Thresholds are arbi-
trary, but they are used only for visualization purposes and play
no role in statistical analysis.
To search for main effects and interactions of type-I and

type-II performances on functional connectivity and attentional
states, we conducted an analysis of covariance (ANCOVA). We
measured the average connectivity matrix Ĉs,p, a 5 × 5 matrix
resulting from all possible pairings between FP, CO, DBN, SM,
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and OC for each subject p and attentional state s. Each entry nm
of this matrix represents the average connectivity between system
n and system m. This matrix was submitted to a single ANCOVA
as dependent variable, with type-I and type-II performance as
continuous regressors, and attentional state (exteroceptive, resting,
interoceptive) as within-subjects factor and subject identity as a
random-effect factor. Previously to running the ANCOVA test, we
assessed that our data satisfied assumptions of normality (Shapiro–
Wilk normality test, W = 0.99, P value >0.05) and homogeneity of
variances (Bartlett’s K-squared = 1.62, df = 2, P value >0.1). As
we report in the main text, type I and type II performances are
not completely independent but their correlation is not strong
enough to impair the ANCOVA analysis with these factors.
To study the effect of both types of performance on connec-

tivity within each attentional state, we followed this analysis with
three independent ANCOVA, one per attentional state. We mea-
sured the average connectivity Ĉs,p matrix between functional sys-
tems for each subject p and attentional state s, and submitted it to
an ANCOVA, with type-I and type-II performances as continuous
regressors, and subject identity as a random-effect factor.
To create Fig. 3 A and B, we conducted a one-sample t test

analysis comparing β-value changes across attentional states at
a functional network level. Unlike the ANCOVA analysis, this
analysis is performed directly on the β-values (Bs,r matrices), not
on the functional connectivity (temporal similarity between time
series of ROI pairs) values (Ĉs,p matrices). For each pair of func-
tional systems (n,m) we consider all of the Bs,r(i,j) where ROI(i)
belongs to system n and ROI(j) belongs to system m. For each pair
of systems (n,m) we obtained a distribution of β-values (i.e., all
ROIs i and j dependences). For example, for the SM–FP system
pair, because SM is composed of 33 ROIs and FP is composed of
21 ROIs, the β-distribution is composed of 33 × 21 β-values. To
obtain the distribution of β for a within-network connectivity (for
example SM–SM), only the upper diagonal of the β-matrix is
averaged because connectivity between pairs of ROIs is sym-
metric and excluding the triangular part because the correla-
tion between a ROI and itself is trivially 1. For each pair of systems
(n,m) the statistical significance of the dependence of this specific
connection with performance is assessed comparing the mean value
of the distribution of dependences against zero, by means of
a one-sample t test and correcting for multiple comparisons. We
display a link between two functional systems if the t value for
that connection is higher than 5.35, corresponding to a P value of
10−5, Bonferroni corrected for multiple comparisons (two-tailed
one-sample t test, 15 pairs of systems (n, m) × 3 attentional
states × 2 types of performance).
To create Fig. S3, we followed the same procedure as that for

Fig. 2 A and C. Because this work includes two datasets, obtained

with different scanners, we conducted the bivariate regression
between functional connectivity and type-I and type-II perform-
ances separately for the two datasets. The objective was to in-
vestigate whether our main finding, the interaction of the effects
between attentional state and type-II performance on connec-
tivity, was observed in each dataset. Fig. S3 shows Bs,r matrices
(similar to the ones shown in Fig. S2) for type-II performance for
all attentional states for all subjects in the study (Fig. S3, Top
row), for the Buenos Aires dataset (Fig. S3, Middle row), and for
the Glasgow dataset (Fig. S3, Bottom row). Despite having fewer
subjects, in Bs,r matrices from both datasets we observe the in-
crement in β-values for networks measured under interoceptive
state, visually depicted in this figure as an increase of β-values
involving frontoparietal, sensorimotor, and occipital systems.
To create Fig. S4, we conducted the same analyses described

above, using time series of 3-, 4-, 5-, 6-, and 7.22-min length, which
is equivalent to 90, 120, 150, 180, and 220 scans. For the Glasgow
dataset, we extended this analysis to 12 min. For each block
duration, we measured a connectivity matrix (Cs,p) per subject p
and attentional state s, and linearized each connectivity matrix
to obtain a vector of length N = 19,881 (141 × 141). We then

calculated the dot product a:b=
XN

i= 1
ai:bi, between the vec-

tor, corresponding to the linearized Cs,p for the time series of
different length, and vector b, the linearized Cs,p obtained from
the full-length time series. This way we quantified the similarity
between a Cs,p matrix obtained from the full-length time series
and the Cs,p matrices obtained from shorter time series. A value of
1 means perfect concordance of values, whereas a value of 0 implies
full orthogonality. Similarity values approach monotonically to
1 as the time series increases (Fig. S4). Even using time series of
5 min, the projection into the full-length matrix yields a similarity
above 0.95, showing that time series length hardly affected the
results obtained.
Fig. S5 was generated to explore howmuch of the total variance

in the fMRI data was explained by the two behavioral regressors
(type-I and type-II performances). We calculated the R-squared
value, quantifying the proportion of variance that the model
explains. We collapsed R-squared values across attentional states
(variations due to attentional state were minimal) to obtain a
single distribution of R-squared values. Fig. S5 shows that only
a minor portion of the total variance is explained by the model,
including both behavioral regressors, as expected by the noisy
nature of the fMRI data and the complexity of the sources of
variation in brain activation during resting state fMRI, showing
that the connectivity between any pair of ROIs cannot be strongly
related to another variable.
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Fig. S1. A total of 141 regions of interest (ROIs) used in the analysis.

Fig. S2. Organization of functional brain networks according to subjects’ individual metacognitive ability and performance. (A) Slope (β) values for type-I
performance of the bivariate regression between functional connectivity and both types of performance. (B) Slopes for type-II performance of the bivariate
regression between functional connectivity and both types of performance.
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Fig. S3. Dependence of functional brain connectivity with type-I and type-II performances for the two datasets. (A) Matrix of slope (β) values for type-II
performance of the bivariate regression between functional connectivity and both types of performance, for all subjects in the experiment. (B) Matrix of
β-values for type-II performance of the bivariate regression between functional connectivity and both types of performance for the 16 subjects from Buenos
Aires. (C) Matrix of β-values for type-II performance of the bivariate regression between functional connectivity and both types of performance, for the
9 subjects from Glasgow. Despite the low number of subjects, there is still a visible effect of positive β-values involving frontoparietal connectivity systems in
the interoceptive state.

Fig. S4. Connectivity analysis using shorter time series. (A) Projection of each matrix (3, 4, 5, 6, and 7.22 min or 90, 120, 150, 180, and 220 scans) into the
220-time points matrix for the subjects from Buenos Aires. A value of 1 means perfect concordance of values, whereas a value of 0 implies full orthogonality.
Matrices approached monotonically to the matrix calculated with full-length time series, as the time series length used to calculated them increased. Even
using time series of 5 min, the projection into a the full-length matrix yields a similarity above 95% (B). (B) Projection of each matrix (3–12 min, or 90, 120, 150,
180, 210, 240, 300, 330, and 360 scans) into the 360-time points matrix for the subjects from Glasgow.
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Fig. S5. Variance in the fMRI data explained by the regressors of interest. Distribution of all R-squared values of the bivariate regression between connectivity
and type-I and type-II performances, collapsed across all attentional states and regressors. Almost all values are lower than 0.5, showing that the amount of
variance explained by the two behavioral regressors is moderate.
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