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Decision-making involves the selection of one out of many possible courses of action.
A decision may bear on other decisions, as when humans seek a second medical opinion
before undergoing a risky surgical intervention. These “meta-decisions” are mediated by
confidence judgments—the degree to which decision-makers consider that a choice is
likely to be correct. We studied how subjective confidence is constructed from noisy
sensory evidence. The psychophysical kernels used to convert sensory information into
choice and confidence decisions were precisely reconstructed measuring the impact
of small fluctuations in sensory input. This is shown in two independent experiments
in which human participants made a decision about the direction of motion of a set
of randomly moving dots, or compared the brightness of a group of fluctuating bars,
followed by a confidence report. The results of both experiments converged to show that:
(1) confidence was influenced by evidence during a short window of time at the initial
moments of the decision, and (2) confidence was influenced by evidence for the selected
choice but was virtually blind to evidence for the non-selected choice. Our findings
challenge classical models of subjective confidence—which posit that the difference of
evidence in favor of each choice is the seed of the confidence signal.

Keywords: perceptual decision-making, confidence, metacognition, psychophysical reverse-correlation,

classification images, accumulation models of decision-making

INTRODUCTION
In perceptual decisions, reaction times and accuracy distribu-
tions can be explained with great quantitative detail by models
in which sensory evidence is accumulated to a threshold (Gold
and Shadlen, 2007; Ratcliff and McKoon, 2008). A tempting
hypothesis is that confidence reflects the accumulated signal
at the moment of choice (Vickers, 1979; Moreno-Bote, 2010).
Supporting this view, neurophysiological signals indexing choice
confidence have been found in the same neurons encoding the
accumulation process (Kiani and Shadlen, 2009).

However, other studies have signaled dissociations between
confidence and accuracy whereby accurate responses were sys-
tematically observed at low confidence and erred responses at
very high confidence (Graziano and Sigman, 2009). Transcranial
magnetic stimulation (TMS) applied to the visual cortex can
decrease accuracy but increase decision confidence (Rahnev et al.,
2011), and lesion and TMS inactivation of dorso-lateral pre-
frontal cortex can impair human ability to estimate choice con-
fidence without affecting performance (Del Cul et al., 2009;
Rounis et al., 2010). The role of prefrontal cortex actively link-
ing objective performance to subjective beliefs is also implied by
correlations between a subject’s meta-cognitive ability and gray
matter volume in the anterior prefrontal cortex (Fleming et al.,
2010).

Hence, there is contradictory evidence on whether confidence
indexes a faithful analog measure of the accumulation process or,
conversely, a partially distorted estimation of the decision signal.

Here we address this issue quantitatively, comparing the empirical
kernels (Eckstein and Ahumada, 2002) used to construct choice
and confidence in simple decisions made on fluctuating motion
(Kiani and Shadlen, 2009) or luminance (Neri and Heeger, 2002)
signals.

RESULTS
EXPERIMENT 1: CHOICE AND CONFIDENCE IN MOTION
DISCRIMINATION
Participants observed a random-dot kinematogram for a fixed
duration of 700 ms. When the stimulus disappeared, they made
an eye-movement toward a target in the direction of motion
(upward or downward, Figure 1A). Following the eye movement
(“choice”), participants indicated the degree to which they con-
sidered their response to be correct (“confidence”), reporting on
a continuous scale going from chance to complete certainty. The
number of coherently moving dots (called the “motion coher-
ence”) was adjusted to maintain the proportion of correct choices
at 67% (Watson and Pelli, 1983).

Applying a set of motion-sensitive filters following a procedure
described by Adelson and Bergen (1985) we measured for each
trial the momentary motion evidence in the upward and down-
ward directions. These filters compute independently upward and
downward motion (Adelson and Bergen, 1985); hence, two dots
moving with equal speed in opposite directions will generate net
and equal motion energy in both directions even if the average
motion is zero.
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FIGURE 1 | The influence of sensory evidence on choice and confidence

derived from a motion discrimination task. (A) A trial of the motion task.
The motion stimulus was presented for 700 ms after which participants
signaled the response with an eye-movement and made a confidence report
on a continuous scale ranging from complete chance on the left to absolute
certainty on the right. Motion coherence was set to maintain accuracy at
67%. On average, confidence reports on correct trials were higher than on
incorrect trials (one-tailed paired t-test, p < 5.10−8, df = 18). (B) Influence
of motion energy fluctuations on choice. Motion energy fluctuations were
obtained by applying a filter to the random dot stimulus and subtracting the
mean motion energy set by the trial’s motion coherence and direction.
Upward and downward fluctuations were derived independently, and then

averaged for the selected (blue) and non-selected (orange) directions. On
average, fluctuations made motion energy in the selected direction to be
above the mean, and motion energy in the opposite direction to be below the
mean. (C) Time course of the decision kernel, obtained as the difference
between ES(t) and EN(t). (D) Motion energy fluctuations for the selected and
non-selected directions split according to confidence ratings into high (solid
line) and low (dotted line) confidence. (E) Time course of the confidence
kernel, showing that motion information had an early effect on confidence.
(F) Motion energy fluctuations for the selected and non-selected directions,
after subtracting low confidence trials from high confidence trials (shown in
panel D). In panels B–F, shaded regions indicate SEM. Motion energy signals
were smoothed with a Gaussian kernel with standard deviation of 40 ms.

In each trial, the random dot stimulus gives rise to motion
information that varies in magnitude and direction. On aver-
age, the fluctuations in motion energy should cancel and motion
energy should only reflect the mean motion coherence. However,
at any moment in any particular trial, the stimulus con-
tains motion information which influences the subjects’ choice.
Previous studies have shown that the time-varying contribution
of motion information on choice can be recovered by reverse-
correlation methods (Kiani et al., 2008; Resulaj et al., 2009). The
main novelty of our study is the use of noise correlation analysis
to the study of decision confidence.

From each trial (tr) we computed the fluctuations in motion
energy in the selected Etr

S (t) and the non-selected Etr
N(t) direc-

tions. These quantities were computed so that they only
reflect deviations from the mean set by the motion coher-
ence and direction of motion. Motion energies were then aver-
aged across trials and participants, to obtain the time-varying
signals ES(t) = 〈

Etr
S (t)

〉
tr and EN(t) = 〈

Etr
N(t)

〉
tr , which measure

the average influence of motion in the selected and non-
selected directions at different moments of the trial (Figure 1B).
Comparison of ES(t) and EN(t) shows that the probability of
choosing a direction of motion (i.e., upwards) may increase
either because motion energy in the upwards direction was
above the mean (positive ES(t)) or, alternatively, because motion

energy in the opposite direction was below the mean [neg-
ative EN(t)] (Figure 1B). In fact, EN(t) is virtually the mir-
ror image of ES(t) [i.e., ES(t) ∼ −EN(t)] which was confirmed
by a t-test comparing the areas under both curves (measured
for each individual subjects) which showed no significant dif-
ferences (p = 0.57, t = 0.58, df = 18) (Figure 1B). This result
is expected since the formal solution of the task requires an
estimation of the difference between upward and downward
motion energy. In simple words, this indicates that positive
votes in favor of a choice and the lack of votes in favor of
the opposite choice contribute equally and add to form a deci-
sion. To combine these two measures we define the decision
kernel as:

ED(t) = ES(t) − EN(t) (1)

i.e., the difference between the fluctuations relative to the mean
of the motion energy in the selected and the non-selected direc-
tions. ED(t) measure the influence of the combined motion signal
on the perceptual choice at each moment in time (Figure 1C).
As in previous studies (Kiani et al., 2008) we observed that the
choice kernel in motion judgments peaks around 200 ms—but
remained significantly above zero during the entire period of
stimulus viewing (Figure 1C).
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Our main objective was to investigate how sensory evidence
contributes to subjective confidence. To this aim, we first cate-
gorized confidence reports, which were made on a continuous
scale, in high- or low-confidence, using a median-split crite-
rion applied to each individual session. Motion energies for the
selected and non-selected directions were independently obtained
for the high- and low-confidence trials (Figure 1D), and their
difference calculated according to:

ECONF_S(t) = 〈
Etr

S (t)
〉
HIGH − 〈

Etr
S (t)

〉
LOW (2)

ECONF_N(t) = 〈
Etr

N(t)
〉
HIGH − 〈

Etr
N(t)

〉
LOW (3)

As in Equation (1), we combined these two signals according
to:

ECONF(t) = ECONF_S(t) − ECONF_N(t), (4)

which describes how the combined statistics of the noise affects
confidence reports.

We then compared the influence of motion information on
choice and confidence. The time-course of the confidence ker-
nel [ECONF(t)] was significant over a narrower temporal window
than the decision kernel [ED(t)] (Figure 1E). To quantify this
effect, we computed the last time for which confidence and
choice kernels were 1 s.e. above zero. The corresponding times
were 0.26 ± 0.09 s for confidence, and 0.73 ± 0.12 s for choice
(mean and standard errors were derived from Jackknife estimates
based on individual sessions). A t-test revealed that the differ-
ence between these latencies was significant (t = 2.96, p < 0.005,
df = 37). These results show that early moments of the decision
have a net effect on confidence judgments.

The most interesting observation arises when confidence is
analyzed separately for motion in the selected ECONF_S(t) and
non-selected ECONF_N(t) directions. We observed an asymmet-
rical dependence revealing that ECONF_S(t) (i.e., fluctuations of
motion in the selected direction) had a higher effect on confi-
dence than ECONF_N(t) (Figure 1F). To test the significance of
this observation, we measured for each individual subject the
difference in the area under each curve, computing the quan-

tity
(∫ T

0 ECONF_S(τ) − ECONF_N(τ) × (−1)dτ
)

for T = 300 ms.

A t-test confirmed that this difference was significant (P < 0.05,
t = 1.84, df = 18). This implies that when comparing high and
low confidence trials, positive fluctuations in favor of the selected
choice had a greater impact than negative fluctuations in the
non-selected choice. We conducted a linear regression analysis to
verify the early and asymmetrical impact of motion fluctuations
on confidence judgments. For each session, the raw confidence
data was sorted into deciles. Motion energy fluctuations toward
and away from the selected target were averaged in an early
(T < 0.3 s) and a late (T > 0.3 s) temporal window, and used
(together with an intercept term) as independent variables to fit
the confidence deciles. We found that only early motion fluctua-
tions in selected direction had a significant effect on confidence
(p < 0.005), consistent with our previous analysis.

EXPERIMENT 2: CHOICE AND CONFIDENCE IN AN RT TASK OF
LUMINANCE DISCRIMINATION
A potential confound of the motion discrimination task is that
momentary motion energy in both directions is partially corre-
lated (at least in the standard version of the task in which the
number of points is fixed as we used here). Thus, the two sig-
nals used to investigate the time-course of the construction of
confidence are not fully independent. To discard this confound
and test the robustness of our findings, we performed a second
independent experiment in which participants decided which of
two patches, located at opposite sides of a fixation point, was
brighter. Each patch was composed of four vertical, spatially adja-
cent bars (Figure 2A). The luminance of each bar was resampled
independently every 40 ms from a Gaussian distribution with
equal variance. The mean luminance was set higher for one of the
two patches (“target”), adjusted to keep the proportion of cor-
rect responses at 75% (Watson and Pelli, 1983). Since the goal
of this experiment was to test the generality of our findings we
changed several additional parameters, detailed in the “Materials
and Methods” section which we reasoned could constitute poten-
tial confounds. In particular, stimulus viewing time was not fixed
and participants were free to decide when to make a response.

The analysis follows exactly the same procedure as in the
motion task, measuring the influence of noise fluctuations
on choice and confidence through psychophysical reverse-
correlation methods. We measured luminance fluctuations aver-
aged across all trials for the selected and non-selected patches.
This was done independently for each of the four bars of the
patch, to obtain Lb

S(t) and Lb
N(t), where the super index b ranges

from 1 to 4 and denotes the position of the bar from the fovea
to the periphery (Figure 2B). Then, we averaged across all spatial
locations: LS(t) = 〈

Lb
S(t)

〉
b and LN(t) = 〈

Lb
N(t)

〉
b to measure the

temporal course of luminance fluctuations for the selected and
non-selected patches.

Momentary luminance in the selected [LS(t)] and non-
selected [LN (t)] patches had comparable influences on choice
(Figure 2C) (testing whether the area of the selected and non-
selected patches were different over the first 300 ms was not
significant, P = 0.381, t = 0.98, df = 4). As with the motion
task, this result is expected since the formal solution of this task
requires an estimation of the difference of luminance between the
patches. For instance, participants may opt for the right patch
either because it is bright (positive votes favoring right) or because
the left patch is dim (absence of votes favoring left).

We combined momentary luminance fluctuations in the
selected and non-selected patches to compute the luminance deci-
sion kernel LD(t) = LS(t) − LN(t). The luminance decision ker-
nel peaked on the third sample (centered at 100 ms) (Figure 2D)
in consistency with previous reports (Ludwig et al., 2005).

As for the motion experiment, we measured the difference
between fluctuations of luminance obtained from high and low
confidence trials, for the selected and non-selected patch:

Lb
CONF_S(t) =

〈
Lb,tr

S (t)
〉
HIGH

−
〈
Lb,tr

S (t)
〉
LOW

(5)

Lb
CONF_N(t) =

〈
Lb,tr

N (t)
〉
HIGH

−
〈
Lb,tr

N (t)
〉
LOW

(6)
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FIGURE 2 | The influence of sensory evidence on choice and confidence

derived from a luminance discrimination task. (A) A trial of the luminance
task. Two patches of flickering bars (updated at 25 Hz) were presented until
participants made a response. Participants indicated which patch is brighter
and the confidence in their decision with a single manual response.
(B) Spatiotemporal profile of the luminance signal. The red vertical line
represents the fixation point, and the four columns to each side indicate the
luminance in time of the four bars in each patch, numbered from the fovea to
the periphery. (C) Time course of the influence of luminance fluctuations on
choice. Luminance fluctuations were obtained by subtracting from the
luminance of each bar the mean of the distribution used to sample the
luminance values, and averaging across the four bars in each patch. On average,

fluctuations were positive for the patch selected as the brighter (shown in blue),
and negative (dimmer) for the opposite patch (orange). (D) Time course of the
decision kernel, obtained as the difference between LS (t) and LN (t). (E) Time
course of the confidence kernel, showing an early effect of luminance
information on confidence decisions. (F) The average of the luminance
fluctuations in low confidence trials was subtracted from that of high
confidence trials, independently for the patch that was selected as the brighter
(blue) and for the opposite patch (orange). The selected and the non-selected
patches made unequal contributions to decision confidence. (G) Same as in
panels C and F, but preserving the spatial structure of the stimulus (i.e., not
averaging across the four bars in each patch before computing the decision and
confidence kernels). In panels C–F, shaded regions indicate SEM.

We averaged across the four bars in each patch to obtain:
LCONF_S(t) = 〈

Lb
CONF_S(t)

〉
b

and LCONF_N(t) = 〈
Lb

CONF_N(t)
〉
b

and, as in Equation (4), combined these two signals to derive the
luminance confidence kernel:

LCONF(t) = LCONF_S(t) − LCONF_N(t) (7)

As for motion, the time-course of the luminance confi-
dence kernel was significant over a narrower temporal win-
dow than the choice kernel (Figure 2E). The last times for
which the choice and confidence kernels were significant (1 s.e.
above zero for three consecutive samples) were 0.19 ± 0.05 s for
confidence, and 0.73 ± 0.21 s for choice (mean and standard
errors were derived from the Jackknife estimates based on indi-
vidual sessions). A t-test revealed that the difference between
these measures was significant (t statistics, P < 0.05, t = 2.76,
df = 9).

When confidence was analyzed separately for luminance in
the selected [LCONF_S(t)] and non-selected [LCONF_N(t)] patches,
we observed an asymmetrical dependence revealing that mainly
luminance fluctuations in the selected patch affected confidence
(Figure 2F). A t-test confirmed that momentary luminance in
the selected and non-selected patch had a different influence on
confidence (P < 0.05, t = 2.99, df = 4).

Repeating the exact same analysis independently for each
bar of the patch (instead of collapsing them in the average
luminance for each patch) shows the robustness of this anal-
ysis (Figure 2G). The spatiotemporal profile of influences of
luminance on choice shows a very similar pattern for the
selected and non-selected patches (with opposite signs). For
confidence, there is a clustered influence of the early sam-
ples of the selected patch with is biased toward the periphery,
while the spatiotemporal influence of the non-selected patch
shows only a very noisy and unstructured distribution (see
Discussion).
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PSYCHOPHYSICAL KERNELS PREDICTED BY CURRENT
MODELS OF CHOICE AND CONFIDENCE
The motion and luminance experiments revealed highly consis-
tent patterns despite involving different visual attributes (lumi-
nance and motion), response modality (fix time or freely
responding), response effectors (eye movement or manual
responses), and response order (two consecutive responses index-
ing choice and confidence independently or a single response
grouping choice and confidence). Our results show that in both
cases, noise fluctuations had a relatively homogeneous effect on
choice. Using the vote analogy, participants may choose an option
either because it had many votes or because the opposite option
did not have any favoring votes (the other patch was dim, the
opposite motion direction had no energy). This information is
accumulated during a broad temporal window. Confidence acts as
a rectifier, mainly weighting votes in favor of the selected choice.

The specific blindness of the confidence system, which has
access to a distorted readout of the sensory signal, was surprising
and intriguing. Since we showed that it was robust and repli-
cable to different setups we reasoned that it might derive from
basic aspects of the decision making machinery. Next, we explore
whether our findings can be accounted by current standard
models of confidence and decision-making.

The decision process has been modeled as a noisy integra-
tor that accumulates evidence provided by the sensory systems
(Vickers, 1970; Gold and Shadlen, 2007; Ratcliff and McKoon,
2008). Two canonical alternatives of binary decisions have been
proposed to describe how perceptual evidence is stochastically
accumulated in time until a threshold: the “race” and the
“random-walk” models. In the race model each signal is inte-
grated independently until the first hits a decision boundary. In
the random-walk model, it is the difference between both sig-
nals (instead of each of them independently) that is integrated
to a threshold. These two modules can be seen as a contin-
uum (Bogacz, 2007; Moreno-Bote, 2010) in which the parameter
which weights the cross-talk between both tasks is varied. When it
is set to zero, the decision is based on a race. When it is set to 1 the
model is based on a random-walk. Intermediate values of cross-
talk lead to hybrid models which integrate in parallel evidence in
favor of both decisions while also conveying information about
the difference between both signals.

We simulated different variants of competing-accumulation
models in a task which required the accumulation of time-varying
sensory evidence, and fitted the models to the data obtained from
the luminance task. For each model, the state of the two accumu-
lators is described by two variables L and R, which count votes in
favor of the left and right responses, respectively, and are updated
according to:

Li+1 = Li + (
μ × s + ηL,i − ρ(ηR,i + μ × (1 − s))

)
(8)

and

Ri+1 = Ri + (
μ × (1 − s) + ηR,i − ρ(ηL,i + μ × s)

)
(9)

In Equations (8) and (9), i is the time step, which is set to
40 ms to match the update rate of the luminance experiment.

μ (the first free parameter of the model) is the mean signal dif-
ference between target and distractor. ηL and ηR are the noise
in the left and right patches, respectively, sampled independently
at each time step from a standard Gaussian distribution. s indi-
cates whether the target patch is on the left (s = 1) or on the right
(s = 0). The parameter ρ controls the degree of anti-correlation
between the two accumulators. We explored three instantiations
of this set of equations: ρ = 0 (race model), ρ = 1 (random-walk
model), and ρ = 0.5 (partial model) (Figure 3).

The fourth model (last column in Figure 3) is a variant of
the race model, inspired by the one adopted by Vickers in his
models of confidence (Vickers, 1979), and thus referred here as
Vickers race model. At each time step, the difference between
the right and left signals was computed, and the only accu-
mulator that was updated was the one for which the differ-
ence was positive. Specifically, at each time step we computed
the difference: di = μ × s + ηL,i − (ηR,i + μ × (1 − s)), where
the different variables are defined as in Equations (8) and (9).
The accumulators were then updated as follows. If di > 0, then
Li+1 = Li + di and Ri+1 = Ri; else, if di < 0, Ri+1 = Ri + di and
Li+1 = Li.

For every model, the decision process continues until one of
the accumulators reaches a threshold which signals the selected
choice. The threshold level (thres) constitutes the second free
parameter of each model. In the simulations, we considered that
the decision variables L and R could only take positive values
(which gives rise to the non-monotonic shape of the performance
kernels). Decision kernels were computed as in the experiments,
with ηL and ηR as the noise signals used to derive the choice
and confidence kernels. Parameters μ and thres were adjusted
to maximize the fraction of explained variance (see “Materials
and Methods”). Independent fits were conducted for each model,
based on 100,000 simulated trials. All models were capable of
adequately fitting the decision kernels, as shown in Figure 3
(upper row).

After the optimal parameters were obtained fitting the deci-
sion kernels, we computed the probability of a high confidence
report according to two commonly used criteria: (1) confidence
as a function of decision time (the time step at which one of
the accumulators reached the threshold) (Audley, 1960; Kiani and
Shadlen, 2009), and (2) confidence as a function of the “balance
of evidence” (the absolute difference in the state of the two accu-
mulators, BE = abs(L − R), at the moment of choice) (Vickers,
1979).

To investigate which of these two mechanisms could account
for confidence distributions, the probability of a high confidence
trial was computed independently as a function of either DT
(decision time) or BE (balance of evidence), according to a sig-
moid function with only one parameter: p+ = (1 + exp(−a(x −
m)))−1, where p+ is the probability of a high confidence response,
x is either BE or DT across trials, m is the median of x, and a
controls the slope of the sigmoid function.

For each model, the parameter a was fitted to the confi-
dence kernels, maximizing the fraction of explained variance
(see “Materials and Methods”). The analysis of the best-fitting
models (Figure 3) shows that confidence kernels based on the bal-
ance of evidence hypothesis predict either a symmetrical effect of
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FIGURE 3 | Alternative models of decision and confidence. Each column
shows the performance of a different model, sketched in the upper part of
the figure. In the race model each signal (L and R) is integrated independently
until the first hits a decision boundary. In the random-walk model, it is the
difference between both signals (instead of each of them independently) that
is integrated to a threshold. In the partial model, evidence for the opposite
alternative is integrated but less efficiently. In Vickers race model, the sign of
the difference between L and R defines which of the two accumulators is
updated in each time step. For each model, we computed the influence of
fluctuations on choice and confidence. In the upper row (“Performance”), the
average of the input noise to the winning (S) and losing (NS) accumulators is
shown in blue and orange, respectively. Gray and black curves show the
noise averages from the luminance experiment (repeated from Figure 2C),

which were used for fitting the models. Confidence was modeled according
to two different criteria: confidence as a function of decision time, or
confidence as a function of the “balance of evidence” (difference in the state
of the accumulators at the moment of choice). The two rows in the bottom
show the impact of input fluctuations on confidence. As for the experiments,
the average of the input fluctuations in low confidence trials was subtracted
from that of high confidence trials, independently for the winning (blue) and
losing (orange) accumulator. A single parameter was used to fit the
confidence kernels of the luminance task, which are shown in Figure 2F and
repeated here in light (S) and dark (NS) gray. For both experiment and model,
the amplitude of the kernels was normalized to the standard deviation of the
noise. Models were fit to maximize the R-squared, which is indicated inside
each graph.

fluctuations in the selected and unselected alternatives (Vickers’s
race model), or predict that the fluctuations from the unselected
alternative would have a larger effect than those at the selected
one, exactly the opposite of what we found in the motion and
luminance experiments. The larger impact of the fluctuations
from the unselected side is expected under the balance of evi-
dence hypothesis, since the accumulator for the selected choice
is always at the threshold when a decision is made and thus most

of the variability in the balance of evidence depends on the state
of the losing accumulator. The small effect of the fluctuations
in the selected patch (initially positive, then negative), can be
explained by the fact that fast responses will tend to be associated
with higher confidence because the accumulator corresponding
to the non-selected alternative has less time to drift closer to the
threshold. As previously noted (Vickers, 1979), the balance of evi-
dence hypothesis is incompatible with the random-walk model
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since each accumulator is the mirror image of the other and thus
the difference is constant at the moment of choice (for thresholds
that do not vary with time).

The analysis of the confidence kernels based on decision time
shows that Vickers’s race model and the random-walk model both
predict that sensory evidence from the selected and non-selected
alternatives would make equal contributions to the confidence
judgment. The alternative race model—where each accumulator
integrates evidence from a single spatial location—does predict
a reduced influence of evidence from the non-selected patch,
but the sign of this influence is opposite to the one observed in
the experiment. A model with partial interaction between both
accumulators, which stands between the race and random-walk
models (the partial model with ρ = 0.5), can simultaneously
describe the main qualitative findings for both the decision and
confidence kernels (Figure 3).

DISCUSSION
Relying on an extension of psychophysical reverse correlation
methods (Ahumada, Jr., 1996; Gosselin and Schyns, 2001), we
derived the temporal kernels describing how sensory information
influences choice and confidence judgments. Our results show
that: (1) confidence is mostly influenced by the initial moments
of the decision and (2) confidence is sensitive to evidence for
the selected choice but is virtually blind to evidence against the
non-selected choice. These results were consistently observed in
two independent experiments. Simply to avoid misinterpretations
we also emphasize that our results are agnostic relative to when
confidence is being made (Baranski and Petrusic, 1998); they
indicate which subset of the signal contributes to confidence but
make no claim on whether this information is used in real-time
or retrospectively accessing a distorted memory of the sensory
signal.

The early influence of sensory evidence on confidence seems
incompatible with recent models that postulate that when con-
fidence reports are required, sensory evidence continues to accu-
mulate after the commitment to a choice (Pleskac and Busemeyer,
2010). These models would predict temporal kernels for con-
fidence which remain significant after the choice kernels have
faded out.

The observation that confidence is influenced mainly by evi-
dence in favor of the selected choice is also incompatible with
random-walk models of decision-making, a popular mathemat-
ical model where two-alternative decisions are described by a
one-dimensional system that integrates over time the difference
between two noisy inputs, such that a choice is made when it
reaches a threshold (Ratcliff and McKoon, 2008). In these models,
sensory evidence in favor of a decision automatically translates
into evidence against the other (Kiani and Shadlen, 2009), which
makes them unable to explain the asymmetric influence of differ-
ent pieces of sensory evidence. Our results show that to account
for these observations, distortions in this conversion process
ought to be incorporated.

Interestingly, these distortions in the accumulation of evi-
dence occur naturally in neurophysiological models of decision-
making based on attractor networks (Usher and McClelland,
2001; Wang, 2002; Wong and Wang, 2006). These models rely

on the competitive interaction of pools of neurons represent-
ing alternative decisions, interacting through lateral inhibition
and self-excitation. As in random-walk models, each accumu-
lator is affected by sensory inputs bearing on both alternatives.
Crucially, the influence of different sensory inputs is subjected
to different latencies, since lateral connections are slow. These
slow connections are required to attain stable firing rates in both
spontaneous and memory regimes (Brunel and Wang, 2001),
implement winner-take-all dynamics, and model the slow ramp-
ing activity observed in LIP in the random-dot motion task
(Wang, 2002). Thus, it is conceivable that the distortion in the
accumulation process required by our best-fitting model may be
due to delays introduced by slow lateral connections in attractor
networks.

Most models of confidence judgments based on independent
accumulators relied on Vickers’s “balance of evidence” hypothe-
sis, which postulate that confidence is a function of the difference
in accumulated evidence between both accumulators once one of
them reaches the decision threshold (Vickers, 1979). Assuming
a fixed response threshold, this readout predicts either symmet-
rical kernels of confidence, or confidence kernels with a lower
influence from the selected alternative. These results are oppo-
site to our behavioral findings. However, with the simple ad-hoc
assumption that only the evidence supporting the selected inte-
grator is accessible by the meta-cognitive system, the asymmetry
can be easily recovered. Partial support for this assumption results
from the observation of a limited-capacity readout of internal
variables in different experimental setups. For instance, in a pre-
vious study we demonstrated that introspection of response time
is tightly correlated with objective response time in a single-task
context. However, in a dual task paradigm, the objective process-
ing delay resulting from interference by a second concurrent task
was totally absent from introspective estimates (Corallo et al.,
2008; Marti et al., 2010). In another dual-task psychophysical
experiment, it was shown that a categorical choice on the direc-
tion of motion conditions which subset of the sensory informa-
tion is used subsequently to make fine direction discrimination
(Jazayeri and Movshon, 2007). Similarly, in our experiment, it is
then reasonable to assume that a choice made in a binary decision
may alter the subset of sensory information available for a sub-
sequent confidence judgment. Under this view, even if the early
samples are the most decisive ones, information for the confi-
dence system is read retrospectively and top-down mechanisms
to retrieve this information may selectively weight information in
circuits encoding the selected choice.

Evidence in favor of a limited-capacity of the meta-cognitive
readout of sensory system also comes from an analysis of the
contribution of each individual bar in the patch to choice and
confidence (Figure 2G). Consistently with our observations in
the temporal domain, only a subset of the sensory informa-
tion used for choice is accessible for meta-cognitive judgments.
Also, the more peripheral bars of the patch had a stronger
influence on confidence. This result may seem surprising but
is compatible with a view in which the movement of attention
inflicted by a spatial choice biases the weights of sensory evi-
dence. The mechanistic explanation of this process should be a
matter of further investigation; in this article we concentrated
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on understanding the temporal construction of choice and confi-
dence judgments.

Our results support theories of confidence as a function of
decision time (Audley, 1960). In other words, for an external
observer, knowing the decision time should be sufficient to deter-
mine confidence. It is tempting to assume that our brains proceed
in the same way, mapping estimation of confidence to estimation
of time. In fact, elapsed time can be computed while a decision is
being made simply estimating the area under the ramping curve.
This is a very simple geometric argument when evidence is accu-
mulated to a fixed threshold: if the height is fixed, the area of a
triangle determines its base. Hence, the estimation of time and
therefore of confidence, may rely on an integration of activity of
neurons which in turn integrate sensory evidence. This process
would literally instantiate the notion that confidence judgments
results from a decision about a decision, i.e., a hierarchical cas-
cade of canonical circuits implementing decisions with different
levels of abstraction relative to the external world (McClelland,
1979).

MATERIALS AND METHODS
PARTICIPANTS
Nineteen participants took part in the motion experiment. Each
participant performed 2 sessions of 600 trials each, in blocks of
100 trials. Five participants took part in the luminance experi-
ment. Each participant performed 2 sessions of 480 trials each, in
blocks of 160 trials. All participants were college students, aged
between 20 and 30 years old. The study was approved by a local
ethical committee for biomedical research, and informed consent
was obtained from all subjects.

MOTION
Stimuli were generated following the procedures described pre-
viously by Cook and Maunsell (Cook and Maunsell, 2004). The
random dots were white, presented on a black background, had
a diameter of 0.14◦ and appeared within a 6.5◦ circular aper-
ture centered on the fixation point. White dots were grouped
in two patches, each updated every other frame (frame rate =
60 Hz) using the following procedure. The dots of one patch
were replaced with a new set of randomly positioned dots. Dots
in the other patch were displaced by a fixed distance of 0.33◦.
The dots in the later patch determined the coherence of motion.
For 0% coherence, each dot moved by the same amount, in a
random direction. For 100% coherence, they moved the same
fixed distance, all in the same direction. On the next update, the
groups were switched. This procedure assured that participants
cannot obtain motion information by tracking individual dots.
The motion coherence displayed on each trial was adjusted online
to keep the proportion of correct responses at 67%, with a Quest
procedure (Watson and Pelli, 1983). Motion coherence was cor-
rupted with additive noise sampled from a Gaussian distribution
with a mean of zero and a standard deviation of 7% (in coher-
ence scale), resampled every 4 frames. Each trial started with the
presentation of a red fixation dot (diameter of 0.2◦) on a black
background which remained visible. The motion stimulus was
presented after the participant had fixated on a central red fix-
ation point for 1000 ms. Gaze position was monitored with an

EyeLink 1000 eyetracker, at a sampling frequency of 1000 Hz, and
a response was computed when the gaze was within 2.5◦ of one
of the two targets. The experiment was programmed using the
Psychophysics Toolbox extensions for Matlab (Mathworks) (Pelli,
1997).

LUMINANCE
Participants fixated a central red dot (diameter of 0.56◦) on a gray
background (50 cd/m2) for 200 ms. Two flickering gray patches
were presented at both sides of the fixation dot until a response
was made. Patches were presented on the horizontal meridian,
centered at ±1.04◦ from the fixation point. Each patch was com-
posed of four vertical, spatially adjacent bars (0.14◦ × 0.56◦). The
luminance of the bars was updated synchronously every 40 ms,
sampling from a Gaussian distribution with a standard deviation
of 10 cd/m2. The mean of this distribution equaled the lumi-
nance of the background for one of the patches and was set
higher for the other (referred as “target”). Trials in which par-
ticipants selected the target were considered correct. The mean
luminance of the target was adjusted to keep the proportion of
correct responses at 75% (Watson and Pelli, 1983). Responses
were informed through the keyboard: participants pressed keys
A or S to indicate that the brighter patch was on the left (respec-
tively, corresponding to a low and high confidence choice) and
keys K or L to indicate that the brighter patch was on the right
(respectively, corresponding to a low and high confidence choice).
After each response, a green or red rectangle indicated whether
the choice was (respectively) correct or incorrect. The experiment
was programmed using Cogent 2000, as implemented in Matlab
(Mathworks).

MOTION ENERGY
To quantify the fluctuations in motion during the course of
each trial, we filtered the sequence of random dots with spa-
tiotemporally oriented filters following the procedure described
in previous studies (Adelson and Bergen, 1985; Kiani et al., 2008).
Spatiotemporally oriented filters were constructed by adding the
outputs of two separable filters. The spatial impulse response
functions were defined as:

even(x, y) = cos(2παy) exp

(
− y2

σ2
y

)
exp

(
− x2

σ2
x

)

odd(x, y) = sin
(
2παy

)
exp

(
− y2

σ2
y

)
exp

(
− x2

σ2
x

)
,

and the temporal impulse response functions as:

fast(t) = (kt)3 exp(−kt)

[
1

3! − β
(kt)2

(3 + 2)!
]

slow(t) = (kt)5 exp(−kt)

[
1

5! − β
(kt)2

(5 + 2)!
]

,

with α = 0.56, k = 100 s−1, σy = 0.97◦, σx = 0.02◦ and
β = 0.9.
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The two spatial and two temporal responses can be com-
bined into four separable spatiotemporal responses. Motion
filters were constructed by combining linearly these spatiotem-
poral responses, resulting in two upwards- and two downwards-
selective filters (Adelson and Bergen, 1985; Kiani et al., 2008).
The filters were then convolved with the motion dot pattern,
after binning the dots presented on each frame in a spatial
grid of 100 × 100 bins covering the whole stimulus. The out-
put of the two filters selective to the same direction of motion
were squared and summed. The two resulting signals provide
a good estimate of the motion energy in the upwards- and
downwards- directions at each point in the image and as a
function of time.

Since our aim was to understand the temporal course of
choice and confidence, we summed the energies across space
for each individual trial. The mean motion energy was removed
from each trial, as we were interested in the impact of the
motion fluctuations deviating from the trial’s mean. The mean
motion energy was estimated independently for each direction
of motion (toward or away from the target) and time frame,
fitting a linear regression model with motion coherence and inter-
cept as independent variables and motion energy as dependent
variable. After subtraction of the mean, we obtained two signals
from each trial quantifying the motion energy fluctuations in the
upward and downward directions as a function of time.

MODEL FITTING
We compared our results to four alternative models of decision
and confidence. Each model contained three parameters (μ, thres,
and a). The parameters were adjusted to maximize the R-squared

statistic:

R2 = 1 − SSMODEL

SSDATA
,

where

SSMODEL =
[ ∑

t<320 ms

(
XDATA

S (t) − XMODEL
S (t)

)2

+
∑

t<320 ms

(
XDATA

NS (t) − XMODEL
NS (t)

)2
]

SSDATA =
[ ∑

t<320 ms

(
XDATA

S (t)
)2 +

∑
t < 320 ms

(
XDATA

NS (t)
)2
]

S stands for “selected” side, NS for “non-selected” patch, and X is
the average of the noise in the conditions specified by the indexes
(corresponding to the data points shown in Figure 3).
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